[image:]
Al-Mustaqbal University
College of Sciences
Department of Cybersecurity

كليـــة العلـــــوم
قسم الأمن السيبراني

	
Subject: Object Oriented Programming (OOP)
Second Stage
Lecturer: Dr. Abdulkadhem A. Abdulkadhem

Lecture (5)
[bookmark: _GoBack] Introduction to Object-Oriented Programming (OOP) -Continue

2.4. Polymorphism:
Polymorphism allows objects of different types to be treated as objects of a common superclass. It enables a single function or method to behave differently based on the object that calls it.
	[image: خلفيات 4K الحرباء جديدة , اجمل صور الزواحف , 2024 Chameleon Wallpapers | صقور الإبدآع]#include <iostream>
using namespace std;

class Animal {
public:
 virtual void makeSound() {
 cout << "Some generic animal sound" << endl;
 }
};

class Dog : public Animal {
public:
 void makeSound() override {
 cout << "Woof!" << endl;
 }
};

class Cat : public Animal {
public:
 void makeSound() override {
 cout << "Meow!" << endl;
 }
};

int main() {
 Animal* myAnimal;
 Dog myDog;
 Cat myCat;

 myAnimal = &myDog;
 myAnimal->makeSound(); // Outputs: Woof!

 myAnimal = &myCat;
 myAnimal->makeSound(); // Outputs: Meow!

 return 0;
}

Explanation:
· Here, we use polymorphism to treat Dog and Cat objects as Animal objects. The method makeSound() behaves differently depending on whether it's called by a Dog or a Cat.
· Polymorphism enables flexibility and the ability to handle multiple object types through a common interface (in this case, Animal).
Example: Let’s consider a simple example where we have different geometric shapes like circles, rectangles, and triangles. We want to write a method that can draw any shape, but the way we draw each shape is different.
To achieve this, we can create a base class Shape that has a virtual method draw(). Each derived class will override the draw() method to provide its specific implementation.

	#include <iostream>
using namespace std;
class Shape { // Base class (superclass)
public:
 virtual void draw() { // Virtual function to allow overriding in derived classes
 cout << "Drawing a generic shape" << endl;
 }
};
class Circle : public Shape { // Derived class representing a circle
public:
 void draw() override { // Overriding the draw() function for Circle
 cout << "Drawing a circle" << endl;
 }
};
class Rectangle : public Shape { // Derived class representing a rectangle
public:
 void draw() override { // Overriding the draw() function for Rectangle
 cout << "Drawing a rectangle" << endl;
 }
};
class Triangle : public Shape { // Derived class representing a triangle
public:
 void draw() override { // Overriding the draw() function for Triangle
 cout << "Drawing a triangle" << endl;
 }
};
int main() {
 Shape* shape; // Pointer to base class (Shape)
 Circle circle;
 Rectangle rectangle;
 Triangle triangle;
 shape = &circle; // Assign pointer to Circle object and call draw()
 shape->draw(); // Output: Drawing a circle
 shape = &rectangle; // Assign pointer to Rectangle object and call draw()
 shape->draw(); // Output: Drawing a rectangle
 shape = ▵ // Assign pointer to Triangle object and call draw()
 shape->draw(); // Output: Drawing a triangle
 return 0;
}

3. Conclusion:
Object-Oriented Programming makes software design more organized and intuitive by breaking down a problem into objects. Through abstraction, encapsulation, inheritance, and polymorphism, OOP encourages code reuse, modularity, and ease of maintenance.
Key Takeaways:
· Abstraction simplifies complex systems.
· Encapsulation protects data and ensures controlled access.
· Inheritance promotes code reuse.
· Polymorphism allows for flexibility in method behavior.
2024-2025
image1.jpeg

image2.png

