

## COLLEGE OF ENGINEERING AND TECHNOLOGIES ALMUSTAQBAL UNIVERSITY

# **Electronics Fundamentals CTE 204**

#### Lecture 2

- Physics of Semiconductor - (2024 - 2025)

Dr. Zaidoon AL-Shammari

Lecturer / Researcher

zaidoon.waleed@mustaqbal-college.edu.iq

#### Introduction





- Electrical resistivity is a fundamental property of a material that measures how strongly it resists electric current.
- A low resistivity indicates a material that readily allows electric current.
- $\triangleright$  Resistivity is commonly represented by the Greek letter  $\rho$  (rho).
- $\triangleright$  The SI unit of electrical resistivity is the ohmmeter  $(\Omega \cdot m)$ .





$$\rho = R \frac{A}{l}$$



Figure 1: Resistive material with electrical contacts on both ends

#### Where:

- > R is the electrical resistance of a uniform specimen of the material.
- ➤ 1 is the length of the specimen .
- > A is the cross-sectional area of the specimen.

## Resistivity





- $\triangleright$  Both resistance R and resistivity  $\rho$  describe how difficult it is to make electrical current flow through a material.
- > But unlike resistance, resistivity is an intrinsic property.
- This means that all pure copper wires irrespective of their shape and size, have the same resistivity.
- ➤ But a long, thin copper wire has a much larger resistance than a thick, short copper wire.
- > Every material has its own characteristic resistivity.





For example, rubber has a far larger resistivity than copper.



Figure 2: Resistivity of rubber and copper

## Conductivity





- Electrical conductivity or specific conductance is the reciprocal of electrical resistivity.
- > It represents a material's ability to conduct electric current.
- $\triangleright$  It is commonly signified by the Greek letter  $\sigma$  (sigma).
- > The SI unit of electrical conductivity is siemens per meter (S/m).

#### Where:

- $\bullet$  or is the electrical conductivity.
- ρ is the electrical resistivity.

$$\sigma = \frac{1}{\rho}$$

## Conductivity





#### Causes of conductivity

- In Metal: A metal consists of a lattice of atoms, each with an outer shell of electrons that freely dissociate from their parent atoms and travel through the lattice.
- This 'sea' of dissociable electrons allows the metal to conduct electric current.
- When an electrical potential difference (a voltage) is applied across the metal, the resulting electric field causes electrons to drift towards the positive terminal.

#### Material classification





Electrical properties of Insulators, Semiconductors and Conductors

Based on the electrical conductivity all the materials in nature are classified as insulators, semiconductors, and conductors.



Figure 3: Material classification

#### Insulators





- An insulator is a material that offers a very low level (negligible) of conductivity when voltage is applied. Paper, Plastic, Rubber, ....
- ➤ Band structure of a material defines the band of energy levels that an electron can occupy.
- ➤ Valence band VB: is the range of electron energy where the electron remain bended to the atom and do not contribute to the electric current.
- Conduction bend CB: is the range of electron energies higher than valance band where electrons are free to accelerate under the influence of external voltage source resulting in the flow of charge.

#### Material classification







Figure 4: Energy band diagrams insulator, semiconductor and conductor

#### Conductors





- A conductor is a material which supports a generous flow of charge when a voltage is applied across its terminals, (it has very high conductivity).
- Eg: Copper, Aluminum, Silver, Gold....
- The Valance and conduction bands overlap and there is no energy gap for the electrons to move from valence band to conduction band.
- This implies that there are free electrons in CB even at absolute zero temperature.

#### Semiconductor





- A semiconductor is a material that has its conductivity somewhere between the insulator and conductor.
- Two of the most commonly used are Silicon (Si=14 atomic no.) and germanium (Ge=32 atomic no.).
- Both have 4 valance electrons.

## **Energy Levels**





- ➤ The more distant the electron from the nucleus, the higher the energy state.
- Any electron that has left its parent atom has a higher energy state than any electron in the atomic structure.



Figure 5: Energy level

## Energy Levels





- ➤ Between the discrete energy levels are gaps in which no electrons in the isolated atomic structure can appear.
- Recall that ionization is the mechanism whereby an electron can absorb sufficient energy to break away from the atomic structure and enter the conduction band.
- You will note that the energy associated with each electron is measured in electron volts (eV).

$$1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$$

For an insulator, there is a large forbidden band gap of greater than 5Ev.

## **AL- MUSTAQBAL UNIVERSITY**COMPUTER TECHNIQUES ENGINEERING





