Resultant It is the result of adding two or more vectors together.

Example: Find the Resultant for the vector force where $\overrightarrow{F_1} = 100i + 150j + 200k$ and $\overrightarrow{F_2} = 50i - 30j + 50k$

$$\overrightarrow{F_1} + \overrightarrow{F_2} = (100i + 150j + 200k) + (\overrightarrow{F_2} = 50i - 30j + 50k) \implies \overrightarrow{F_1} + \overrightarrow{F_2} = 150i + 120j + 250k$$

<u>Dot Product:</u> it is symbolized as $(dot \stackrel{or}{\Longrightarrow} \bullet)$

The dot product of any tow vectors $\vec{A} = x_1 i + y_1 j + z_1 k$ and $\vec{B} = x_2 i + y_2 j + z_2 k$ is scalar quantity:

$$\overrightarrow{A}(dot)\overrightarrow{B} \xrightarrow{or} \overrightarrow{A}.\overrightarrow{B} \xrightarrow{Scalar} C = x_1x_2 + y_1y_2 + z_1z_2$$

Example: $if \vec{A} = 2i + 7j + 4k$ and $\vec{B} = 3i - j + 5k$ find A(dot) B:

$$\vec{A} = 2i + 7j + 4k$$

 $\vec{B} = 3i - j + 5k$ $A(dot) \xrightarrow{or} A.B = (2)(3) + (7)(-1) + (4)(5) \implies A.B = 6 - 7 + 20 \implies A.B = 19$

<u>Cross Product:</u> it is symbolized as $(cross \xrightarrow{or} \times)$

The cross product of any two vectors $\vec{A} = x_1 i + y_1 j + z_1 k$ and $\vec{B} = x_2 i + y_2 j + z_2 k$ is vector quantity:

$$\overrightarrow{A}cross \overrightarrow{B} \xrightarrow{or} \overrightarrow{A} \times \overrightarrow{B}$$
 $\xrightarrow{vactor} \overrightarrow{V} = \begin{vmatrix} i & j & k \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix}$

$$\Rightarrow \vec{V} = (y_1 z_2 - y_2 z_1) i - (x_1 z_2 - x_2 z_1) j + (x_1 y_2 - x_2 y_1) k \qquad \xrightarrow{This Result that Vactor} \vec{V} \perp \vec{A} \& \vec{V} \perp \vec{B}$$

Example: $if \vec{A} = 2i + j + 4k$ and $\vec{B} = 3i - j + 5k$ find $\vec{A} \times \vec{B}$ and $\vec{B} \times \vec{A}$:

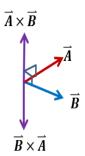
$$\begin{vmatrix} \vec{A} \times \vec{B} = \begin{vmatrix} i & j & k \\ 2 & 1 & 4 \\ 3 & -1 & 5 \end{vmatrix} \Rightarrow \vec{A} \times \vec{B} = \begin{vmatrix} i & j & k \\ 2 & 1 & 4 \\ 3 & -1 & 5 \end{vmatrix} \Rightarrow \vec{A} \times \vec{B} = \begin{vmatrix} i & j & k \\ 2 & 1 & 4 \\ 3 & -1 & 5 \end{vmatrix} \Rightarrow \vec{A} \times \vec{B} = (5i + 12j - 2k) - (3k - 4i + 10j)$$
$$\Rightarrow \vec{A} \times \vec{B} = 9i + 2j - 5k$$

$$|\vec{B} \times \vec{A}| = \begin{vmatrix} i & j & k \\ 3 & -1 & 5 \\ 2 & 1 & 4 \end{vmatrix} \implies |\vec{B} \times \vec{A}| = \begin{vmatrix} i & j & k \\ 3 & 1 & 5 \\ 2 & 1 & 4 \end{vmatrix} \implies |\vec{B} \times \vec{A}| = (-4i + 10j + 3k) - (-2k + 5i + 12j)$$

$$\Rightarrow \vec{A} \times \vec{B} = 9i + 2j - 5k$$

$$\Rightarrow \vec{B} \times \vec{A} = -9i - 2j + 5k$$

Note that
$$\overrightarrow{B} \times \overrightarrow{A} = -(\overrightarrow{A} \times \overrightarrow{B})$$



<u>Angle between two vectors</u>: The angle between any two vectors such as \vec{A} and \vec{B} can be finding by using the following

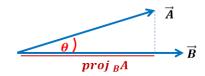
$$\cos\theta = \frac{\vec{A} \cdot \vec{B}}{|\vec{A}| \ |\vec{B}|}$$

$$\Rightarrow \theta = \cos^{-1} \frac{\vec{A} \cdot \vec{B}}{|\vec{A}| |\vec{B}|}$$

$$\cos\theta = \frac{\overrightarrow{A} \cdot \overrightarrow{B}}{|\overrightarrow{A}| |\overrightarrow{B}|} \implies \theta = \cos^{-1}\frac{\overrightarrow{A} \cdot \overrightarrow{B}}{|\overrightarrow{A}| |\overrightarrow{B}|} \quad \text{or by} \quad \sin\theta = \frac{|\overrightarrow{A} \times \overrightarrow{B}|}{|\overrightarrow{A}| |\overrightarrow{B}|} \implies \theta = \sin^{-1}\frac{|\overrightarrow{A} \times \overrightarrow{B}|}{|\overrightarrow{A}| |\overrightarrow{B}|}$$

<u>Projection:</u> the vector projection of \vec{A} onto \vec{B} is: $proj_B A = \left(\frac{\vec{A} \cdot \vec{B}}{|B|}\right) \frac{\vec{B}}{|B|}$ is vector projection of \vec{A} onto \vec{B}

$$proj_B A = \left(\frac{\overrightarrow{A} \cdot \overrightarrow{B}}{|B|}\right) \frac{\overrightarrow{B}}{|B|}$$



 \overrightarrow{A} proj $_{B}A=rac{\overrightarrow{A}\cdot\overrightarrow{B}}{|B|}$ is scalar component of \overrightarrow{A} in the direction of \overrightarrow{B}

Example: if $\vec{A} = 3i - j + 2k$ and $\vec{B} = 2i - 2j + k$ find The angle between \vec{A} and \vec{B} and projection of \vec{A} onto \vec{B}

$$\theta = \cos^{-1} \frac{\vec{A} \cdot \vec{B}}{|\vec{A}| \ |\vec{B}|} \ \Rightarrow \ \cos^{-1} \frac{6+2+2}{\sqrt{9+1+4} \ \sqrt{4+4+1}} \ \Rightarrow \ \theta = \cos^{-1} \frac{10}{\sqrt{126}} \ \Rightarrow \theta = 27.02^{\circ}$$

$$proj_{B}A = \left(\frac{\overrightarrow{A} \cdot \overrightarrow{B}}{|B|}\right) \frac{\overrightarrow{B}}{|B|} \implies \left(\frac{6+2+2}{\sqrt{4+4+1}}\right) \frac{2i-2j+k}{\sqrt{4+4+1}} \implies \frac{10}{9}(2i-2j+k)$$

Note: at Dot Product $i \cdot i = 1$, $j \cdot j = 1$, $k \cdot k = 1$ while $i \cdot j = 0$, $j \cdot k = 0$, $k \cdot i = 0$

<u>Note:</u> at cross Product $i \times j = k$, $j \times k = i$, $k \times i = j$ while $i \times i = 0$, $j \times j = 0$, $k \times k = 0$

Note: the cross product of any two vector result in a vector perpendicular to them such as:

if
$$\overrightarrow{V_1} \times \overrightarrow{V_2} = \overrightarrow{V} \implies \overrightarrow{V} \perp \overrightarrow{V_1}$$
 and $\overrightarrow{V} \perp \overrightarrow{V_2}$

<u>Note:</u> $if \overrightarrow{V_1}.\overrightarrow{V_2} = 0$ this means that $\overrightarrow{V_1} \perp \overrightarrow{V_2}$ (the two vectors are orthogonal)

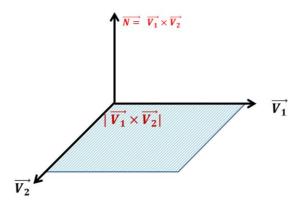
<u>Note:</u> $if \overrightarrow{V_1} \times \overrightarrow{V_2} = 0$ this means that $\overrightarrow{V_1}//\overrightarrow{V_2}$ (the two vectors are parallel)

<u>Note:</u> Area of a Parallelogram between any two vectors $\overrightarrow{V_1}$ and $\overrightarrow{V_2}$ is $|\overrightarrow{V_1} \times \overrightarrow{V_2}|$

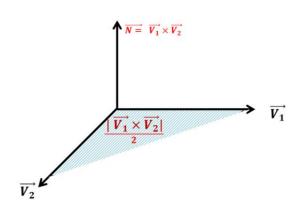
Note: Area of triangle between any two vectors $\overrightarrow{V_1}$ and $\overrightarrow{V_2}$ is $|\overrightarrow{V_1} \times \overrightarrow{V_2}|/2$

Note: The angle between any two vectors $\overrightarrow{V_1}$ and $\overrightarrow{V_2}$ is $\cos \theta = \frac{\overrightarrow{A} \cdot \overrightarrow{B}}{|\overrightarrow{A}| |\overrightarrow{B}|} \Rightarrow \theta = \cos^{-1} \frac{\overrightarrow{A} \cdot \overrightarrow{B}}{|\overrightarrow{A}| |\overrightarrow{B}|}$

<u>Note:</u> projection of \overrightarrow{A} onto \overrightarrow{B} is $proj_B A = \left(\frac{\overrightarrow{A} \cdot \overrightarrow{B}}{|B|}\right) \frac{\overrightarrow{B}}{|B|}$ is vector projection



Area of parallelogram between two vectors



Area of Triangle between two vectors

Let $q(1,4,3)$, $p(5,2,1)$. Find		
Vector between two points \overline{qp}	$\overrightarrow{qp} = (5-1)i + (2-4)j$	$+(1-3)k \Rightarrow \overrightarrow{qp} = 4i-2j-2k$
Length (magnitude) distance	$\Rightarrow \overrightarrow{qp}' = \sqrt{4^2 + 2^2 + 2^2}$	$\Rightarrow \overrightarrow{qp'} = \sqrt{32}$ unit length
Let $\overrightarrow{A}=4i-2j+k$ and $\overrightarrow{B}=3i+j+2k$. Find		
Unit vectors of $\overrightarrow{A} \otimes \overrightarrow{B}$	$\Rightarrow u_A = \frac{\overrightarrow{A}}{ \overrightarrow{A} } = \frac{4i - 2j + k}{\sqrt{4^2 + 2^2 + 1^2}}$, $u_B = \frac{\overrightarrow{B}}{ \overrightarrow{B} } = \frac{3i + j + 2k}{\sqrt{3^2 + 1^2 + 2^2}}$
Dot product $(\vec{A}.\vec{B})$	$\Rightarrow \vec{A} dot \vec{B} = (4i - 2j + k) \cdot (3i + j + k)$	$(-2k) \Rightarrow \overrightarrow{A} \cdot \overrightarrow{B} = 12 - 2 + 2 \Rightarrow \overrightarrow{A} \cdot \overrightarrow{B} = 12$
Cross product $(\vec{A} imes \vec{B})$	$\Rightarrow \vec{A} \times \vec{B} = \begin{vmatrix} i & j & k \\ 4 & -2 & 1 \\ 3 & 1 & 2 \end{vmatrix} \begin{pmatrix} i & j \\ 4 & -2 \\ 3 & 1 \end{pmatrix}$	$\Rightarrow \vec{A} \times \vec{B} = (-4i + 3j + 4k) - (-6k + i + 8j)$ $\Rightarrow \vec{A} \times \vec{B} = -5i - 5j + 10k$
Perpendicular Vectors on $\overrightarrow{A} \& \overrightarrow{B}$ (Normal Vector \overrightarrow{N})	$\overrightarrow{N} = \overrightarrow{A} \times \overrightarrow{B} = \cdots \dots$	$\Rightarrow \vec{N} = \vec{A} \times \vec{B} = -5i - 5j + 10k$
Test the Vectors $\overrightarrow{A} \otimes \overrightarrow{B}$ is Parallel or orthogonal or not	$\Rightarrow \vec{A} \cdot \vec{B} =$	$\Rightarrow \vec{A} \times \vec{B} =$
Angle between two vectors	$cos \theta = rac{\overrightarrow{A} \cdot \overrightarrow{B}}{\left \overrightarrow{A}\right \left \overrightarrow{B}\right }$	
Area of parallelogram & Area of triangle	$\Rightarrow \vec{A} \times \vec{B} = -5i - 5j + 10k$	
Projection $proj_B A$	$proj_{B}A = \left(\frac{\vec{A} \cdot \vec{B}}{ B }\right)\frac{\vec{B}}{ B }$	

<u>H.W:1</u> A(6,-7,-1), B(2,-3,1), C(4,-5,0) are three point: Find

1) The vectors \overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{CA} .

2) The unit vectors of \overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{CA}

3) \overrightarrow{AB} dot \overrightarrow{BC} , and $\overrightarrow{CA} \times \overrightarrow{BC}$

4) The angles between \overrightarrow{AB} and \overrightarrow{BC} , \overrightarrow{CA} and \overrightarrow{BC}

5) The projection \overrightarrow{AB} on to \overrightarrow{BC} as a scalar

6) The projection \overrightarrow{CA} on to \overrightarrow{BC} as a Vector

H.W:2
$$\vec{A} = 3i - j - 2k$$
, $\vec{B} = -6i + 2j + 4k$, $\vec{C} = -4i + 2j$: Find

1) The unit vectors of \overrightarrow{A} , \overrightarrow{B} , \overrightarrow{C}

2) $\overrightarrow{A} \times \overrightarrow{B}$, $\overrightarrow{A} \times \overrightarrow{C}$, $\overrightarrow{B} \times \overrightarrow{C}$

3) $\overrightarrow{A} \cdot \overrightarrow{B}$, $\overrightarrow{A} \cdot \overrightarrow{C}$, $\overrightarrow{B} \cdot \overrightarrow{C}$

4) The angles between \overrightarrow{A} and \overrightarrow{B} , \overrightarrow{B} and \overrightarrow{C}

5) The projection \vec{A} on to \vec{B} as a scalar

6) Find the area of Parallelogram and area of triangle between \overrightarrow{A} and \overrightarrow{B} . ,

Examples:

Ex. (1): Find the angle between $\mathbf{A} = 2\mathbf{i} + 2\mathbf{j} - \mathbf{k}$ and $\mathbf{B} = 6\mathbf{i} - 3\mathbf{j} + 2\mathbf{k}$? Solution:

A . **B** = AB cos
$$\theta$$
, $A = |\mathbf{A}| = \sqrt{(2)^2 + (2)^2 + (-1)^2} = 3$

$$B = |\mathbf{B}| = \sqrt{(6)^2 + (-3)^2 + (2)^2} = 7$$

A.
$$\mathbf{B} = (2)(6) + (2)(-3) + (-1)(2) = 4$$
,

Then
$$\cos \theta = \frac{\mathbf{A} \cdot \mathbf{B}}{AB} = \frac{4}{(3)(7)} = 0.1905, \quad \therefore \theta \approx 79^{\circ}$$

Example 1: Find the angle between the two vectors 2i + 3j + k, and 5i -2j + 3k.

Solution:

The two given vectors are:

$$\vec{a} = 2i + 3i + k$$
, and $\vec{b} = 5i - 2j + 3k$

$$|\vec{a}| = \sqrt{2^2 + 3^2 + 1^2} = \sqrt{4 + 9 + 1} = \sqrt{14}$$

$$|\vec{b}| = \sqrt{5^2 + (-2)^2 + 3^2} = \sqrt{25 + 4 + 9} = \sqrt{38}$$

Using the dot product we have $\vec{a} \cdot \vec{b} = 2.(5) + 3.(-2) + 1.(3) = 10 - 6 + 3 = 7$

$$Cos\theta = \frac{a.b}{|a|.|b|}$$

$$= \frac{7}{\sqrt{14}.\sqrt{38}}$$

$$= \frac{7}{2.\sqrt{7 \times 19}}$$

$$=\frac{7}{2\sqrt{133}}$$

$$\theta = \cos^{-1} \frac{7}{2\sqrt{133}}$$

$$\theta = \cos^{-1} 0.304 = 72.3^{\circ}$$

Answer: Therefore the angle between the vectors is 72.3°

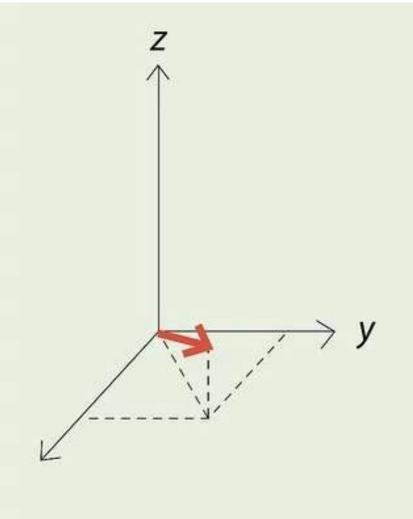
Example 2: Find the cross product of two vectors $\overrightarrow{a} = (3,4,5)$ and $\overrightarrow{b} = (7,8,9)$

Solution:

The cross product is given as,

$$\hat{i}$$
 \hat{j} \hat{k}
 $a \times b = 3$ 4 5
 7 8 9
= $[(4 \times 9) - (5 \times 8)] \hat{i} - [(3 \times 9) - (5 \times 7)] \hat{j} + [(3 \times 8) - (4 \times 7)] \hat{k}$
= $(36 - 40) \hat{i} - (27 - 35) \hat{j} + (24 - 28) \hat{k} = -4 \hat{i} + 8 \hat{j} - 4 \hat{k}$

Answer: Therefore, $\overrightarrow{a} \times \overrightarrow{b} = -4\hat{i} + 8\hat{j} - 4\hat{k}$



$$a = 2\hat{i} + 2\hat{j} + 1\hat{k}$$

 $\hat{a} = ?$

$$|a| = \sqrt{2^2 + 2^2 + 1^2}$$

= $\sqrt{9} = 3$

$$\hat{a} = \frac{2\hat{i}}{3} + \frac{2\hat{j}}{3} + \frac{1\hat{k}}{3}$$