

P a g e | 1 Study Year: 2024-2025

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

العلومكلية
ة ـيـبـطــــة الــــمــــظـــن الانــــــــــســق

ةـــيــــــذكـــال

Lecture: (3)

Introduction to OOP and its need
Subject: Object oriented programming I
Class: Second
Lecturer: Dr. Maytham N. Meqdad

P a g e | 2 Study Year: 2024-2025

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

Introduction to OOP and its need

In Python object-oriented Programming (OOPs) is a programming paradigm that uses objects and classes

in programming. It aims to implement real-world entities like inheritance, polymorphisms, encapsulation,

etc. in the programming. The main concept of object-oriented Programming (OOPs) or oops concepts in

Python is to bind the data and the functions that work together as a single unit so that no other part of the

code can access this data.

OOPs Concepts in Python

 Class in Python

 Objects in Python

 Polymorphism in Python

 Encapsulation in Python

 Inheritance in Python

 Data Abstraction in Python

 Class in Python:

A class is a blueprint for creating objects. It defines properties (attributes) and methods

(functions) that describe the behavior of the objects created from it.

 Objects in Python:

An object is an instance of a class. It is a specific realization of the class that contains data

(attributes) and functions (methods) defined by the class.

 Polymorphism in Python:

Polymorphism means that objects of different classes can use the same method name, but each

class implements the method differently based on its specific behavior.

P a g e | 3 Study Year: 2024-2025

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

 Encapsulation in Python:

Encapsulation is the concept of bundling data and methods that operate on the data within a

class, while restricting direct access to some of the class's components. This is done by making

variables private (using a single or double underscore) and providing getter and setter methods to

access or modify them.

 Inheritance in Python:

Inheritance is the process by which one class (the child or subclass) can inherit properties and

methods from another class (the parent or superclass), allowing code reuse and the extension of

functionality.

 Data Abstraction in Python:

Data abstraction is the process of hiding complex implementation details and showing only the

essential features of an object. This is often achieved using abstract classes and methods, where

the specific implementation is left to the subclasses.

==

Why Do We Need OOP?

1. Code Reusability: Through inheritance, OOP allows new classes to reuse existing code.

This reduces duplication and makes code easier to maintain.

2. Modularity: Code is organized into objects (or classes), which promotes modularity.

This makes it easier to understand, maintain, and modify specific parts of a program

without affecting the whole system.

3. Scalability: OOP systems are easier to scale because objects can be independently

developed and extended. As the system grows, new functionality can be added without

disrupting the existing code.

4. Improved Collaboration: OOP allows multiple developers to work on different parts of

a project simultaneously. Each developer can focus on a specific class or object,

improving efficiency in team environments.

5. Maintainability: Encapsulation ensures that internal object details are hidden, reducing

the likelihood of unintended interference from other parts of the code. This improves

maintainability and reduces bugs.

6. Flexibility through Polymorphism: With polymorphism, you can write more generic

and flexible code that can work with different types of objects, reducing code complexity

and enhancing extensibility.

7. Real-world Representation: OOP allows developers to model real-world systems more

naturally, making the design and implementation process intuitive and effective for

complex software systems.

P a g e | 4 Study Year: 2024-2025

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

Examples

1. Program to Model a Patient's Health Record

This program models a patient's health record, storing basic medical information and allowing

updates. The program models a patient’s medical record. The class Patient stores basic

information (name, age, blood type) and keeps a list of medical records. You can add new

records to a patient’s history and view all the details.

1. # Define a Patient class
2. class Patient:
3. def __init__(self, name, age, blood_type, medical_history=[]):
4. self.name = name # Patient's name
5. self.age = age # Patient's age
6. self.blood_type = blood_type # Blood type (A, B, O, etc.)
7. self.medical_history = medical_history # List of medical history records
8.
9. # Method to add a medical record
10. def add_medical_record(self, record):
11. self.medical_history.append(record)
12. print(f"Medical record added: {record}")
13.
14. # Method to display the patient's details
15. def display_patient_info(self):
16. print(f"Patient Name: {self.name}")
17. print(f"Age: {self.age}")
18. print(f"Blood Type: {self.blood_type}")
19. print(f"Medical History: {self.medical_history}")
20.
21. # Create a patient object and update the medical history
22. patient1 = Patient("John Doe", 45, "A+")
23. patient1.add_medical_record("Diabetes diagnosed in 2018")
24. patient1.add_medical_record("Hypertension diagnosed in 2021")
25. patient1.display_patient_info()

https://www.programiz.com/online-compiler/48ttOpREpDboa

https://www.programiz.com/online-compiler/48ttOpREpDboa

P a g e | 5 Study Year: 2024-2025

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

2. Program to Monitor Blood Pressure Readings

This program monitors and stores blood pressure readings for a patient, alerting if the readings are too

high. This program models a blood pressure monitor. The class BloodPressureMonitor allows adding

systolic and diastolic readings. It checks if a reading is above normal (hypertension) and gives a warning

if the pressure is too high

1. # Define a BloodPressureMonitor class
2. class BloodPressureMonitor:
3. def __init__(self, patient_name):
4. self.patient_name = patient_name
5. self.readings = [] # List to store blood pressure readings
6.
7. # Method to add a blood pressure reading
8. def add_reading(self, systolic, diastolic):
9. reading = {"systolic": systolic, "diastolic": diastolic}
10. self.readings.append(reading)
11. print(f"Reading added: {systolic}/{diastolic} mmHg")
12.
13. # Check if the blood pressure is too high
14. if systolic > 140 or diastolic > 90:
15. print("Warning: High blood pressure detected!")
16.
17. # Method to display all readings
18. def display_readings(self):
19. print(f"Blood Pressure Readings for {self.patient_name}:")
20. for reading in self.readings:
21. print(f"{reading['systolic']}/{reading['diastolic']} mmHg")
22.
23. # Create a blood pressure monitor object and add readings
24. monitor = BloodPressureMonitor("Alice")
25. monitor.add_reading(120, 80) # Normal reading
26. monitor.add_reading(145, 95) # High blood pressure
27. monitor.display_readings()

https://www.programiz.com/online-compiler/9gffYUBoGuUYi

https://www.programiz.com/online-compiler/9gffYUBoGuUYi

P a g e | 6 Study Year: 2024-2025

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

3. Program to Track Medication Schedule

This program models a medication tracking system, allowing patients to track and manage their

medication schedule.

 This program tracks a patient's medication schedule.

 The Medication class holds information about a single medication, including the name, dose, and frequency.

 The PatientMedicationSchedule class allows adding medications to a patient’s schedule and viewing the

complete list.

1. # Define a Medication class
2. class Medication:
3. def __init__(self, name, dose, frequency):
4. self.name = name # Medication name
5. self.dose = dose # Dosage (e.g., mg)
6. self.frequency = frequency # How often to take (e.g., per day)
7.
8. # Method to display medication details
9. def display_medication(self):
10. print(f"Medication: {self.name}, Dose: {self.dose}, Frequency: {self.frequency} times per day")
11.
12. # Define a PatientMedicationSchedule class
13. class PatientMedicationSchedule:
14. def __init__(self, patient_name):
15. self.patient_name = patient_name
16. self.medications = [] # List of medications
17.
18. # Method to add a medication
19. def add_medication(self, medication):
20. self.medications.append(medication)
21. print(f"Added medication: {medication.name}")
22.
23. # Method to display the patient's medication schedule
24. def display_schedule(self):
25. print(f"Medication Schedule for {self.patient_name}:")
26. for med in self.medications:
27. med.display_medication()
28.
29. # Create medication objects and a schedule for a patient
30. med1 = Medication("Metformin", "500 mg", 2)
31. med2 = Medication("Lisinopril", "10 mg", 1)
32.
33. schedule = PatientMedicationSchedule("John Doe")
34. schedule.add_medication(med1)
35. schedule.add_medication(med2)
36. schedule.display_schedule()

https://www.programiz.com/online-compiler/82EEgn2X5fMBr

https://www.programiz.com/online-compiler/82EEgn2X5fMBr

P a g e | 7 Study Year: 2024-2025

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

4. Program to Track Patient Vitals

This program models a system to track a patient's vital signs, such as temperature, pulse, and respiratory rate.

 This program tracks a patient's vital signs.

 The class PatientVitals stores temperature, pulse, and respiratory rate for a patient.

 You can add new vital sign records and view all recorded vitals for monitoring the patient's condition.

1. # Define a PatientVitals class
2. class PatientVitals:
3. def __init__(self, patient_name):
4. self.patient_name = patient_name
5. self.vitals = [] # List to store vital sign records
6.
7. # Method to add vitals
8. def add_vitals(self, temperature, pulse, respiratory_rate):
9. vital_signs = {
10. "temperature": temperature,
11. "pulse": pulse,
12. "respiratory_rate": respiratory_rate
13. }
14. self.vitals.append(vital_signs)
15. print(f"Vitals recorded: Temp={temperature}°C, Pulse={pulse} bpm, Resp={respiratory_rate} breaths/min")
16.
17. # Method to display all recorded vitals
18. def display_vitals(self):
19. print(f"Vitals for {self.patient_name}:")
20. for vital in self.vitals:
21. print(f"Temperature: {vital['temperature']}°C, Pulse: {vital['pulse']} bpm, Respiratory Rate:

{vital['respiratory_rate']} breaths/min")
22.
23. # Create a vitals tracking object and add readings
24. vitals_tracker = PatientVitals("Emily")
25. vitals_tracker.add_vitals(36.8, 72, 16) # Normal vitals
26. vitals_tracker.add_vitals(38.5, 90, 20) # Fever and elevated vitals
27. vitals_tracker.display_vitals()

https://www.programiz.com/online-compiler/3lOO4ixlfX3Sj

https://www.programiz.com/online-compiler/3lOO4ixlfX3Sj

