
1

DeMorgan’s Theorems

DeMorgan’s first theorem is stated as follows:

The complement of a product of variables is equal to the sum of the complements

of the variables.

To apply DeMorgan’s theorem, break the bar over the product of variables and change

the sign from AND to OR.

The complement of two or more AND variables is equivalent to the OR of the

Complements of the individual variables.

The formula for expressing this theorem for two variables is:

 Equation 1

DeMorgan’s second theorem is stated as follows:

 The complement of a sum of variables is equal to the product of the

complements of the variables.

Stated another way,

The complement of two or more ORed variables is equivalent to the AND of the

complements of the individual variables.

The formula for expressing this theorem for two variables is:

Equation 2

Figure 1: shows the gate equivalencies and truth tables for Equations 1 and 2 above.

2

3

4

Logic Simplification Using Boolean Algebra:

A logic expression can be reduced to its simplest form or changed to a more

convenient form to implement the expression most efficiently using Boolean algebra.

5

The approach taken in this section is to use the basic laws, rules, and theorems of

Boolean algebra to manipulate and simplify an expression.

This method depends on a thorough knowledge of Boolean algebra and considerable

practice in its application.

 Apply the laws, rules, and theorems of Boolean algebra to simplify general

expressions.

Simplification means fewer gates for the same function.

Figure below shows that the simplification process in Example 4–9 has significantly

reduced the number of logic gates required to implement the expression. Part (a)

shows that five gates are required to implement the expression in its original form;

6

however, only two gates are needed for the simplified expression, shown in part (b).

It is important to realize that these two gate circuits are equivalent. That is, for any

combination of levels on the A, B, and C inputs, you get the same output from either

circuit.

EX: Using Boolean algebra and Demorgan’s Theorems to Simplify This Expression:

Y= (A’B’C’+A’B’C’+A’BC’+A’BC)’

= (A’B’C’)’ (A’B’C)’ (A’BC’)’ (A’BC)’

= (A’’+B’’+C’’) (A’’+B’’+C’) (A’’+B’+C’’) (A’’+B’+C’)

= (A+B+C) (A+B+C’) (A+B’+C) (A+B’+C’)

= AA+AB+AC’+AB+BB+BC’+AC+BC+CC’

= A+AB+AC’+B+BC’+AC+BC

= A (1+B) +A (C’+C) +B (C+C’) +B

= A+B

= AA+AB’+AC’+AB’+B’B’+B’C’+AC+B’C+CC’

= A+AB’+AC’+B’+B’C’+AC+B’C

= A (1+B’) +A (C’+C) +B’ (C+C’) +B’

= (A+B) (A+B’)

= A+AB+AB’+B’B

= A+AB’

= A

1

Ex1: Design a logic circuit to multiply two (2-bit) numbers using minimum number of logic

gates.

 B1B0 B1B0 B1B0 B1B0

 A1A0 0 0 0 0

A1A0 0 1 1 0

A1A0 0 1 1 0

A1A0 0 0 0 0

P0 = A0B0

 B1B0 B1B0 B1B0 B1B0

 A1A0 0 0 0 0

A1A0 0 0 1 1

A1A0 0 1 0 1

A1A0 0 1 1 0

P1 = A1A0B0 +A1B1B0 + A1A0B1 + A0B1B0

A1 A0 B1 B0 P3 P2 P1 P0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 0 1 1 0 0 0 0

0 1 0 0 0 0 0 0

0 1 0 1 0 0 0 1

0 1 1 0 0 0 1 0

0 1 1 1 0 0 1 1

1 0 0 0 0 0 0 0

1 0 0 1 0 0 1 0

1 0 1 0 0 1 0 0

1 0 1 1 0 1 1 0

1 1 0 0 0 0 0 0

1 1 0 1 0 0 1 1

1 1 1 0 0 1 1 0

1 1 1 1 1 0 0 1

A1

A0

B1

B0

P0

P1

P2

P3

2

 B1B0 B1B0 B1B0 B1B0

 A1A0 0 0 0 0

A1A0 0 0 0 0

A1A0 0 0 0 1

A1A0 0 0 1 1

P2 = A1A0B1 +A1B1B0

P3 = A1A0B1B0

A1

A0

B1

A1

B1

B0

P2

P0
A0

B0

A1

A0

B0

A1

B1

B0

A1

A0

B1

A0

B1

B0

P1

P3

A1
A0
B1
B0

3

Ex2: Design a logic circuit to compare between two (2-bit) numbers.

 B1B0 B1B0 B1B0 B1B0

 A1A0 1 0 0 0

A1A0 0 1 0 0

A1A0 0 0 1 0

A1A0 0 0 0 1

A = B : A1A0B1B0 +A1A0B1B0 + A1A0B1B0 + A1A0B1B0

 =A1B1 (A0B0+A0B0) +A1B1 (A0B0+A0B0)

 = A1B1 (A0 Ꚛ B0) +A1B1 (A0 Ꚛ B0)

A1 A0 B1 B0 A=B A>B A<B

0 0 0 0 1 0 0

0 0 0 1 0 0 1

0 0 1 0 0 0 1

0 0 1 1 0 0 1

0 1 0 0 0 1 0

0 1 0 1 1 0 0

0 1 1 0 0 0 1

0 1 1 1 0 0 1

1 0 0 0 0 1 0

1 0 0 1 0 1 0

1 0 1 0 1 0 0

1 0 1 1 0 0 1

1 1 0 0 0 1 0

1 1 0 1 0 1 0

1 1 1 0 0 1 0

1 1 1 1 1 0 0

4

Let A0 Ꚛ B0 = X

 = A1B1X+A1B1X

 = X (A1 Ꚛ B1)

 = (A0 Ꚛ B0) . (A1 Ꚛ B1)

 B1B0 B1B0 B1B0 B1B0

 A1A0 0 0 0 0

A1A0 1 0 0 0

A1A0 1 1 0 1

A1A0 1 1 0 0

A > B = A1B1 +A0B1B0 + A1A0B0

 B1B0 B1B0 B1B0 B1B0

 A1A0 0 1 1 1

A1A0 0 0 1 1

A1A0 0 0 0 0

A1A0 0 0 1 0

A < B = A1B1 +A1A0B0 + A0B1B0

A0

B0

A1

B1

A = B

5

A1

B1

EX3: For each of the three full-adders in Figure below, determine the outputs for the inputs

shown.

Solution

(a) The input bits are A = 1, B = 0, and Cin = 0.

1 + 0 + 0 = 1 with no carry Therefore, Ʃ = 1 and Cout = 0.

(b) The input bits are A = 1, B = 1, and Cin = 0.

1 + 1 + 0 = 0 with a carry of 1 Therefore, Ʃ = 0 and Cout = 1.

(c) The input bits are A = 1, B = 0, and Cin = 1.

1 + 0 + 1 = 0 with a carry of 1 Therefore, Ʃ = 0 and Cout = 1.

A0

B1

B0

A0

A1

B0

A > B

A1

A0

B0

A0

B1

B0

A1

B1

A < B

6

Ex4: Design a Full.Adder by using Half Adders and OR gate.

Cin

Ex5: Design a logic circuit to add two (2-bit) numbers using adders.

 A1 B1 A0 B0 A A1 A0

 B B1 B0

 S2 S1 S0

A S

 H.A

B Cout1

A S

 H.A

B Cout2
Cout

S1

1 Sum

CY1 CY2

A S

B F.A

C Cout

A B Cin

 F.A

Cout Sum

A B

 H.A

Cout Sum

Cout S1 S0

S2

A

B

Sum

Cout

A

B

Cin

	المحاضرة السادسةمنطق رقمي
	المحاضرة العاشرة

