
1 
 

DeMorgan’s Theorems 

 

DeMorgan’s first theorem is stated as follows: 

The complement of a product of variables is equal to the sum of the complements 

of the variables. 

To apply DeMorgan’s theorem, break the bar over the product of variables and change 

the sign from AND to OR. 

The complement of two or more AND variables is equivalent to the OR of the 

Complements of the individual variables. 

The formula for expressing this theorem for two variables is: 

 

      Equation 1 

 

DeMorgan’s second theorem is stated as follows: 

 The complement of a sum of variables is equal to the product of the 

complements of the variables. 

Stated another way,  

The complement of two or more ORed variables is equivalent to the AND of the 

complements of the individual variables. 

The formula for expressing this theorem for two variables is: 

 

Equation 2 

 

Figure 1: shows the gate equivalencies and truth tables for Equations 1 and 2 above. 
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Logic Simplification Using Boolean Algebra: 

A logic expression can be reduced to its simplest form or changed to a more 

convenient form to implement the expression most efficiently using Boolean algebra. 



5 
 

The approach taken in this section is to use the basic laws, rules, and theorems of 

Boolean algebra to manipulate and simplify an expression. 

This method depends on a thorough knowledge of Boolean algebra and considerable 

practice in its application. 

 Apply the laws, rules, and theorems of Boolean algebra to simplify general 

expressions. 

 

 

Simplification means fewer gates for the same function. 

Figure below shows that the simplification process in Example 4–9 has significantly 

reduced the number of logic gates required to implement the expression. Part (a) 

shows that five gates are required to implement the expression in its original form; 
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however, only two gates are needed for the simplified expression, shown in part (b). 

It is important to realize that these two gate circuits are equivalent. That is, for any 

combination of levels on the A, B, and C inputs, you get the same output from either 

circuit. 

EX: Using Boolean algebra and Demorgan’s Theorems to Simplify This Expression: 

Y= (A’B’C’+A’B’C’+A’BC’+A’BC)’ 

= (A’B’C’)’ (A’B’C)’ (A’BC’)’ (A’BC)’ 

= (A’’+B’’+C’’) (A’’+B’’+C’) (A’’+B’+C’’) (A’’+B’+C’) 

= (A+B+C) (A+B+C’) (A+B’+C) (A+B’+C’)  

= AA+AB+AC’+AB+BB+BC’+AC+BC+CC’ 

= A+AB+AC’+B+BC’+AC+BC 

= A (1+B) +A (C’+C) +B (C+C’) +B 

= A+B 

= AA+AB’+AC’+AB’+B’B’+B’C’+AC+B’C+CC’ 

= A+AB’+AC’+B’+B’C’+AC+B’C 

= A (1+B’) +A (C’+C) +B’ (C+C’) +B’ 

= (A+B) (A+B’) 

= A+AB+AB’+B’B 

= A+AB’ 

= A 
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Ex1: Design a logic circuit to multiply two (2-bit) numbers using minimum number of logic 

gates. 

 

                         

 

 

 

 

 

 

 

 

 

 

                            

                              B1B0  B1B0 B1B0 B1B0 

  A1A0 0 0 0 0 

A1A0 0 1 1 0 

A1A0 0 1 1 0 

A1A0 0 0 0 0 

P0 = A0B0      

                               B1B0 B1B0 B1B0 B1B0 

  A1A0 0 0 0 0 

A1A0 0 0 1 1 

A1A0 0 1 0 1 

A1A0 0 1 1 0 

 

P1 = A1A0B0 +A1B1B0 + A1A0B1 + A0B1B0 

A1     A0     B1     B0 P3     P2       P1        P0 

0         0         0        0 0       0         0           0 

0         0         0        1 0       0         0           0 

0         0         1        0 0       0         0           0 

0         0         1        1 0       0         0           0 

0         1         0        0 0       0         0           0 

0         1         0        1 0       0         0           1 

0         1         1        0      0       0         1           0 

0         1         1        1 0       0         1           1 

1         0         0        0 0       0         0           0 

1         0         0        1 0       0         1           0 

1         0         1        0 0       1         0           0 

1         0         1        1 0       1         1           0 

1         1         0        0  0       0         0           0 

1         1         0        1 0       0         1           1 

1         1         1        0 0       1         1           0 

1         1         1        1 1       0         0           1 
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B1 

B0 

P0 

P1 

P2 

P3 
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                              B1B0 B1B0 B1B0 B1B0 

  A1A0 0 0 0 0 

A1A0 0 0 0 0 

A1A0 0 0 0 1 

A1A0 0 0 1 1 

 

P2 = A1A0B1 +A1B1B0 

P3 = A1A0B1B0      
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Ex2: Design a logic circuit to compare between two (2-bit) numbers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                           

                              B1B0  B1B0 B1B0 B1B0 

  A1A0 1 0 0 0 

A1A0 0 1 0 0 

A1A0 0 0 1 0 

A1A0 0 0 0 1 

 

A = B :  A1A0B1B0 +A1A0B1B0 + A1A0B1B0 + A1A0B1B0 

           =A1B1 (A0B0+A0B0) +A1B1 (A0B0+A0B0) 

           = A1B1 (A0 Ꚛ B0) +A1B1 (A0 Ꚛ B0) 

 

A1     A0     B1     B0 A=B     A>B       A<B         

0         0         0        0 1            0            0            

0         0         0        1 0            0            1            

0         0         1        0 0            0            1            

0         0         1        1 0            0            1            

0         1         0        0 0            1            0            

0         1         0        1 1            0            0            

0         1         1        0      0            0            1            

0         1         1        1 0            0            1            

1         0         0        0 0            1            0            

1         0         0        1 0            1            0            

1         0         1        0 1            0            0            

1         0         1        1 0            0            1            

1         1         0        0  0            1            0            

1         1         0        1 0            1            0            

1         1         1        0 0            1            0            

1         1         1        1 1            0            0            
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Let A0 Ꚛ B0 = X 

             = A1B1X+A1B1X 

           = X (A1 Ꚛ B1) 

           = (A0 Ꚛ B0) . (A1 Ꚛ B1) 

                          

                              B1B0  B1B0 B1B0 B1B0 

  A1A0 0 0 0 0 

A1A0 1 0 0 0 

A1A0 1 1 0 1 

A1A0 1 1 0 0 

 

A > B = A1B1 +A0B1B0 + A1A0B0  

                           

                              B1B0  B1B0 B1B0 B1B0 

  A1A0 0 1 1 1 

A1A0 0 0 1 1 

A1A0 0 0 0 0 

A1A0 0 0 1 0 

 

A < B = A1B1 +A1A0B0 + A0B1B0  

 

A0 

B0 

                              

A1 

B1 

 

A = B 
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EX3: For each of the three full-adders in Figure below, determine the outputs for the inputs 

shown. 

 

Solution 

(a) The input bits are A = 1, B = 0, and Cin = 0. 

1 + 0 + 0 = 1 with no carry Therefore, Ʃ = 1 and Cout = 0. 

(b) The input bits are A = 1, B = 1, and Cin = 0. 

1 + 1 + 0 = 0 with a carry of 1 Therefore, Ʃ = 0 and Cout = 1. 

(c) The input bits are A = 1, B = 0, and Cin = 1. 

1 + 0 + 1 = 0 with a carry of 1 Therefore, Ʃ = 0 and Cout = 1.  
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Ex4: Design a Full.Adder by using Half Adders and OR gate. 
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Ex5: Design a logic circuit to add two (2-bit) numbers using adders. 

 A1     B1                                  A0                B0                   A        A1   A0 

  B         B1   B0 

 

 

                                 

 

 

                    S2 S1 S0 

 

A                   S 
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