

Fundamentals of Radio-physics

First Semester

Week7: Anode Cooling Chart

By

Prof.Dr.Raad Shaker Alnayli Dr.Dhay Ali Sabur & Ms.c Reem Taumu Yousif

2024-2025

➤ Anode Cooling Chart

-The anode has a limited capacity for storing heat. It is possible through prolonged use or multiple exposures to exceed the heat storage capacity of the anode.

Through diagrams it is possible:

- -Determines the maximum heat capacity of the anode.
- -Determines the length of time required for complete cooling following any level of heat input
- -Different from the radiographic rating chart, the anode cooling chart does not depend on the filament size or the speed of rotation.
- -The tube represented in Figure 1has a maximum anode heat capacity of 350,000 HU. The chart shows that if the maximum heat load were attained, it would take 15 minutes for the anode to cool completely.

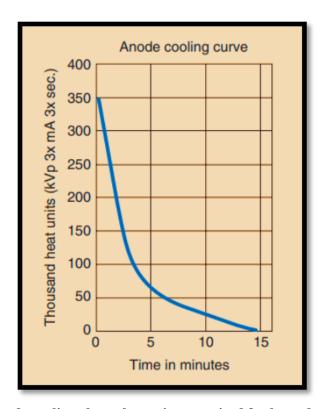


Figure 1: Anode cooling chart shows time required for heated anode to cool.

-The rate of cooling is rapid at first and slows as the anode cools

During x-ray production, most of the kinetic energy of the electrons is converted to heat.

This heat can damage the x-ray tube and the anode target.

The amount of heat produced from any given exposure is expressed by the heat unit (HU).

Heat Units (HU) = (Tube voltage) (Tube current) (Time)
=
$$(kVp)$$
 (mA) (sec). Constant

Generator type	Constant
Single Phase 1φ	1
Three Phase 3φ	1.41
High Frequency	1.45

Example: Radiographic examination of the lateral lumbar spine with a single- phase imaging system requires 98 kVp, 120 mAs. How many heat units are generated by this exposure?

Heat Units (HU) = (Tube voltage) (Tube current) (Time)

$$HU = 98 \text{ kVp} \times 120 \text{mAs} \times 1 = 11760 \text{ J}$$

Example: How much heat energy (in joules) is produced during a high-frequency mammographic exposure of 25 kVp, 200 mAs?

Heat Units (HU) = (Tube voltage) (Tube current) (Time)

$$HU = 25 \text{ kVp} \times 200 \text{ mAs} \times 1.45 = 7250 \text{ J}$$

Example: A examination is performed with a high frequency imaging system at 120 kVp and 500 mA 0.7 s. Calculate the length of time necessary for the anode to cool to 50,000 HU after 5 exposures?

For one exposure

Heat Units (HU) = (Tube voltage) (Tube current) (Time)

$$HU = 120 \text{ kVp} \times 500 \text{mA} \times 0.7 \text{s} \times 1.45$$

 $= 60,900 \text{ J}$

For 5 exposure

$$HU = 5 \times 60,900$$
$$= 304,500 J$$

From the chart (Figure 1), I went to just 50,000 HU which is about 6.25

> Heat production

• Heat is produced in the focal spot area by the bombarding electrons from the cathode. Since only a small fraction of the electronic energy is converted in x-

radiation, it can be ignored in heat calculations. We will assume all of the electron energy is converted into heat.

> Heat Capacity

The heat capacity of the focal spot track is generally the limiting factor for single exposures. In a series of radiographic exposures, CT scanning, or fluoroscopy, the build-up of heat in the anode can become significant. Excessive anode temperature can crack or warp the anode disc.

> Protective X-ray Tube Housing

Every x-ray tube must be contained within protective housing that **reduces** leakage radiation during use.

☐ Leakage radiation is that radiation emitted from the x-ray tube housing in all directions other than that of the useful beam

☐ Leakage radiation must be less than 100 mR/hr (1 mGya/hr) at a distance of 1 m from the protective housing, while the tube operates at maximum output

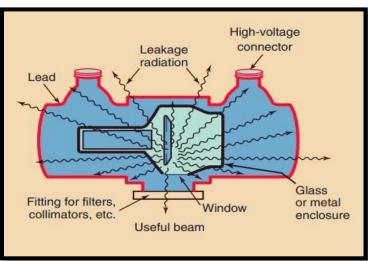


Figure 2: Protective housing reduces the intensity of leakage radiation to less than 1 mGya/hr at 1 m.

Off-Focus Radiation

Some of the electrons bounce off the focal spot and then land on other areas of the target (see figure 3), causing x-rays to be produced from outside of the focal spot

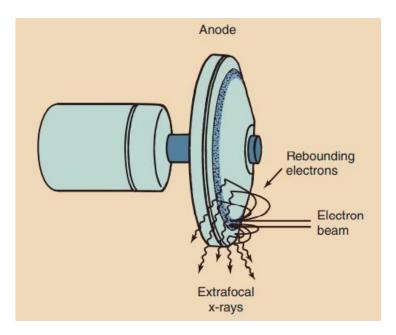


Figure3: Extrafocal x-rays result from interaction of electrons with the anode off of the focal spot.

Off-focus radiation is reduced by designing a fixed diaphragm in the tube housing near the window of the x-ray tube (Figure 3). This is a geometric solution

Housing Cooling Chart

The cooling chart for the housing of the x-ray tube has a shape similar to that of the anode cooling chart and is used in precisely the same way.

 \square Based on the quantity of heat units, these charts provided radiographers with information regarding the amount of time that must elapse before initiating another exposure.