

P a g e | 1 Study Year: 2024-2025

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

العلومكلية
ة ـيـبـطــــة الــــمــــظـــن الانــــــــــســق

ةـــيــــــذكـــال
Lab: (5)

A* (A-Star) algorithm in Python,

Subject: Artificial Intelligence

Class: Third

Lecturer: Dr. Maytham N. Meqdad

P a g e | 2 Study Year: 2024-2025

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

A* (A-Star) algorithm in Python, which is commonly used for path finding and graph traversal.

In this example, the algorithm searches for the shortest path on a grid from a starting point to a

goal point. The algorithm uses a heuristic to guide its search (typically the Manhattan distance or

Euclidean distance in a grid).

import heapq

class Node:

 def __init__(self, position, parent=None):

 self.position = position # (x, y) tuple

 self.parent = parent

 self.g = 0 # Cost from start to the node

 self.h = 0 # Heuristic (estimated cost to the goal)

 self.f = 0 # Total cost (g + h)

 def __lt__(self, other):

 return self.f < other.f

def heuristic(current, goal):

 # Manhattan distance as heuristic

 return abs(current[0] - goal[0]) + abs(current[1] - goal[1])

def a_star(grid, start, end):

 open_list = []

 closed_set = set()

 start_node = Node(start)

 end_node = Node(end)

 heapq.heappush(open_list, start_node)

 while open_list:

 # Get the node with the lowest f score

 current_node = heapq.heappop(open_list)

 closed_set.add(current_node.position)

 # Check if we have reached the goal

 if current_node.position == end_node.position:

 path = []

 while current_node:

 path.append(current_node.position)

 current_node = current_node.parent

 return path[::-1] # Return reversed path

 # Generate neighbors (up, down, left, right)

 neighbors = [(0, 1), (0, -1), (1, 0), (-1, 0)]

 for offset in neighbors:

 neighbor_position = (current_node.position[0] + offset[0],

 current_node.position[1] + offset[1])

 # Check if neighbor is within grid bounds and walkable

 if (0 <= neighbor_position[0] < len(grid) and

P a g e | 3 Study Year: 2024-2025

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

 0 <= neighbor_position[1] < len(grid[0]) and

 grid[neighbor_position[0]][neighbor_position[1]] == 0 and

 neighbor_position not in closed_set):

 neighbor_node = Node(neighbor_position, current_node)

 neighbor_node.g = current_node.g + 1

 neighbor_node.h = heuristic(neighbor_position, end_node.position)

 neighbor_node.f = neighbor_node.g + neighbor_node.h

 # Check if this path to neighbor is better

 if not any(open_node for open_node in open_list if open_node.position == neighbor_position and

open_node.g <= neighbor_node.g):

 heapq.heappush(open_list, neighbor_node)

 return None # No path found

Example grid (0 = walkable, 1 = obstacle)

grid = [

 [0, 1, 0, 0, 0],

 [0, 1, 0, 1, 0],

 [0, 0, 0, 1, 0],

 [0, 1, 1, 0, 0],

 [0, 0, 0, 0, 0]

]

Start and end points

start = (0, 0)

end = (4, 4)

Find path

path = a_star(grid, start, end)

print("Path:", path)

Explanation of the Code:

 Node Class: Represents a node in the search with position, parent (for tracing the path),

and scores (g, h, and f).

 Heuristic Function: Here, we use the Manhattan distance to estimate the cost from a

node to the goal.

 A Algorithm*:

o open_list holds the nodes that need to be evaluated.

o closed_set keeps track of evaluated nodes.

o Nodes are generated for each neighbor (up, down, left, right).

o If a better path to a neighbor is found, it’s added to open_list.

Example Output

P a g e | 4 Study Year: 2024-2025

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

Given the grid, it will return the path from the start to the end if a path exists:

Path: [(0, 0), (1, 0), (2, 0), (2, 1), (2, 2), (3, 3), (4, 4)]

https://www.programiz.com/online-compiler/2apM9OVBXejE0

https://www.programiz.com/online-compiler/2apM9OVBXejE0

