Laboratory of Pharmacology

- Pharmacological experiments are designed to study the effects of drugs on tissues, organs, and other living subjects
- Study the mechanism (s) by which the drug interact and affect the targets
- Qualitative Experiments: Study the Drug-Body interaction
- Quantitative Experiments: Study the amounts of active materials
- Clinical Trials: Study the effect (s)/side effect (s) of drugs on humans

Significance of Pharmacological studies

Drug Development:

 Evaluating and Exploring doses, mechanisms, side effects,... etc.

- Factors that should be considered before the administrating any substance (therapeutic or experimental) to an animal subject:
 - pH
 - Sterility
 - Chemical nature (odor, taste, mucosal irritability, osmolarity, solubility, light sensitivity, and hazard status)
 - The dose to be administered, frequency of administration, volume to be administered, and the solvent (if necessary)
 - Route of administration
- The route of administration is determined primarily by:
 - The properties of the drug (ex. water or lipid solubility, ionization,...)
 - Therapeutic objectives (ex. the need for a rapid onset of action, the need for long term administration, restriction to a local site,...)

Enteral Route of administration

- Additives to the drinking water: The investigator must monitor the animal(s) and assure that adequate fluid intake occurs
- Additives to the food: The investigator must monitor the animal(s) and assure that adequate food intake occurs
- Intra-gastric via gavage:
 - Oral, or gastric, gavage is the administration of fluids directly into the lower esophageal or stomach using a ball ended feeding needle introduced into the mouth and thread down to esophagus
 - Gavage (esophageal or gastric) is often used in research settings, instead of mixing substances in water or food, to ensure accurate dosing of animals
 - The investigator must be trained and well experienced with gavage

Enteral Route

Parenteral routes of administration

 The choice of parenteral route of administration will depend on the volume and material to be injected, and the desired rate of absorption

Subcutaneous (SC) injections

- The best spot to inject Subcutaneously is the loose skin on the back of the neck
- A mouse may easily be injected by one person, whereas a rat may require restraint by one person and injection by the other
- Not suitable for large volumes. Suitable for some insoluble suspensions

Intraperitoneal (IP) injections

- Commonly used in rats and mice since muscle mass is so small and veins are difficult to find
- Rapid absorption (almost as fast as IV) due to large peritoneal surface
- IP administration results in a faster absorption into the vasculature than SC administration
- Suitable for irritating compound, such as ketamine or pentobarbital
- A mouse may easily be injected by one person, whereas a rat might require restraint by one person and injection by the other.

Intraperitoneal (IP) injections

- The injection site is usually on the animal's right lower abdominal quadrant
- Insert the needle at approximately 45 degree angle

Intraperitoneal (IP) injections

- Complications of IP
 - The potential for serious side effects such as peritonitis
 - The risk of injecting the GI tract, kidneys, loop of bowel, and bladder (may also cause its rupture or other vessels in the area)
 - Some substances may cause mild-moderate irritation

Intravenous (IV) injections

- Also called Tail vein injections, is one of the commonly used route
- Technically difficult, and the use of a restraining device with appropriate size for the animal to be injected, is often required
- Performed in mice and rats, use the lateral tail vein located on either side of the tail
- Suitable for large volumes. Must inject slowly. Not suitable for oily solutions or insoluble substances.

Intramuscular (IM) injections

- Not recommended in mice due to their small muscle mass
- In rats, ≤ 0.2 ml/site may be injected into gluteal muscles
- Suitable for some moderate volumes, oily vehicles, and some mildly irritating substances

pH of the compound

- Knowing the pH of the compound and the vehicle is crucial for the administration of the drug
- Aim for pH around 7, if the pH is higher or lower then
 - Buffer to pH 7 if possible
 - Dilute the solution using sterile normal saline
- Injecting a high or low pH preparation as IM or SC would be painful and cause tissue necrosis
- Examples:
 - Pentobarbital is a very basic pH (~11). It Can only be administered as IV or IP injections
 - Ketamine has an acidic pH (~4). It is administered as
 IP. IM administration can cause tissue necrosis

Taste and Odor

- Drugs having bitter tastes cause low subject compliance
- Many taste-masking techniques, such as physical barrier coatings, chemical modification and sensory masking
- Ex. tetracycline, doxycycline and metronidazole
- Adding 2.0-5.0 g sucrose/100 ml water making the solution 2-5% sucrose enhances palatability

Mucosal irritability

 Check tissue compatibility when administering any compounds to mucosal surfaces, i.e. eyes, mouth and trachea

Solubility

- Insoluble compounds may require to be administered as a suspension
- Example is sulfamethoxazole-trimethoprim which administered as a suspension in the drinking water. This suspension must be shaken daily to assure proper dosage

Light sensitivity

 Protect against light exposure either by dispensing in a colored glass or cover clear glass or plastic with foil

Solvents (vehicle) characteristics

- Wide range of vehicle types are available, ex.:
 - Water: For enteral administration only.
 - Corn oil: Gavage administration only.
 - Sesame oil: Gavage administration only.
 - Ethanol:?

Laboratory Animals

Rats were first used for experimental purposes in the mid 1800s

Carefully bred rats are used in animal testing for a number of reasons, including their frequent reproduction, genetic purity and similarities to human biology

Lifespan 2.5-3.5 years

Adult weight M 300-500g, F 250-300g

Birth weight 5-6g

Heart rate 330-480 beats/minute

Respiratory rate 85 breaths/minute

Body temp. 35.9-37.5°C

Rats are generally fed a diet containing low fiber, protein and fat

Rat rooms are usually maintained at 30-70% relative humidity and a temperature of 18-26°C

Rats should be acclimatized to handling to reduce stress

Blood can be collected from several sites in the rat including tail vein, retro-orbital sinus, vena cava or cardiac puncture Can receive oral, IP, IM, and IV

Laboratory Animals

Mice

The mouse and human genomes are about 85 percent the same, and those similarities have made the mouse a powerful model for studying human biology and disease

Handling, blood collection, and drug administration: same as rats

Lifespan 1-3 years

Adult weight M 20-30 g, F 18-35g

Birth weight 1-2 g

Heart rate 310-840 beats/minute

Respiratory rate 80-230 breaths/minute

Body temp. 36.5-38°C

Easy to make disease models

