

Al-Mustaqbal University Department Biomedical engineering Class second Subject Math. (Lecturer (Dr.alaa mohammed Hussein wais) 1st term – Lect. (Vector)

3.8. Curvature, Torsion & binormal vector

Curvature for curves in space

In space there is no natural way to find an angle like \emptyset with which to measuring the change in T along a differential curve .but we still have S, the directed distance along the curve and can define the curvature to be

$$\mathbf{K} = \left| \frac{dT}{dS} \right|$$

OR

$$\mathbf{K} = \frac{|vXa|}{|V^3|}$$

Example: Find the curvature of the curve, where a&b > o

$$r = (a\cos t i + a\sin t j + btk)$$

Solution//

Al-Mustaqbal University Department Biomedical engineering Class second Subject Math.

(Lecturer (Dr.alaa mohammed Hussein wais) 1st term – Lect. (Vector)

$$K = \frac{|vXa|}{|V^3|}$$

$$V = \frac{dr}{dt} = -a \sin t \ i + a \cos t \ j + bk$$

$$a = \frac{dv}{dt} = (-a \cos t \ i - a \sin t \ j + 0k)$$

$$|V| = \sqrt{(-a \sin t)^2 + (a \cos t)^2 + b^2}$$

$$= \sqrt{(a^2 \sin^2 t) + (a^2 \cos^2 t) + b^2}$$

$$= \sqrt{a^2 (\sin^2 t + \cos^2 t) + b^2}$$

$$|V| = \sqrt{a^2 + b^2}$$

$$v Xa = \begin{vmatrix} i & j & k \\ -a \sin t & a \cos t & b \\ -a \cos t & -a \sin t & 0 \end{vmatrix}$$

=+ab sin t i-ab cos t j+ ka^2

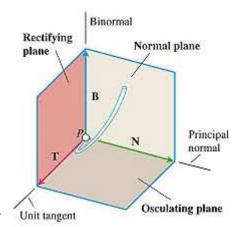
$$|vXa| = \sqrt{(ab \sin t)^2 + (-ab \cos t)^2 + (a^2)^2}$$

$$= \sqrt{a^2b^2\sin^2t + a^2b^2\cos^2t + a^4} = \sqrt{a^2b^2 + a^4}$$

$$|V| = \sqrt{a^2 + b^2}$$

$$|V|^3 = (a^2 + b^2)^{\frac{3}{2}}$$

$$K = \frac{\sqrt{a^2b^2 + a^4}}{(a^2 + b^2)^{\frac{3}{2}}}$$


Exercise: Find the curvature of the curve,

Al-Mustaqbal University Department Biomedical engineering Class second Subject Math. (Lecturer (Dr.alaa mohammed Hussein wais) 1st term – Lect. (Vector)

 $r = (c \cos t i + c \sin t j)$

Torsion & binormal vector

 $B=T \times N$

Binormal vector is perpendicular to both normal (N) & tangent(T) vector $\label{eq:condition} % \begin{subarray}{ll} \end{subarray} % \begin{sub$

The torsion
$$\tau = \left| \frac{dB}{dS} \right|$$

It is measure of how mach the curve twists

$$\tau = \frac{\begin{vmatrix} \dot{x} & \dot{y} & \dot{z} \\ \ddot{x} & \ddot{y} & \ddot{z} \\ \ddot{x} & \ddot{y} & \ddot{z} \end{vmatrix}}{|v \, X \, a|^2} \quad \text{if } \mathbf{v} \, \mathbf{X} \, \mathbf{a} \neq \mathbf{0}$$

Example: Find the torsion of the $r = (\cos t i + \sin t j + tk)$

Al-Mustaqbal University Department Biomedical engineering Class second Subject Math.

(Lecturer (Dr.alaa mohammed Hussein wais) 1st term – Lect. (Vector)

Solution/

$$\tau = \frac{\begin{vmatrix} \dot{x} & \dot{y} & \dot{z} \\ \ddot{x} & \ddot{y} & \ddot{z} \\ |\ddot{x} & \ddot{y} & \ddot{z} | \end{vmatrix}}{|v \, X \, a|^2}$$

$$V = \frac{dr}{dt} = -\sin t \, \dot{i} + \cos t \, \dot{j} + k$$

$$a = -\cos t \, \mathbf{i} - \sin t \, \mathbf{j} + 0k$$

$$\dot{a} = \sin t \, \dot{i} - \cos t \, \dot{j} + 0k$$

$$= \tau = \frac{\begin{vmatrix} -\sin t & \cos t & 1 \\ -\cos t & -\sin t & 0 \\ \frac{\sin t & -\cos t & 0}{\sin t & -\cos t & 0} \end{vmatrix}}{\begin{vmatrix} \dot{i} & \dot{j} & k \\ -\sin t & \cos t & 1 \end{vmatrix}^2} = \frac{\cos^2 t + \sin^2 t}{|\sin t - \cos t \, j + k|^2} = \frac{1}{2}$$

Exercise: Find the torsion for the curve $r = (3 \sin t i + 3 \cos t j + 4tk)$