
Al-Mustaqbal University
College of Sciences

 Intelligent Medical System Department

 كلية العلوم

 ةـــيــــــذكـــة الـيـبـطــــة الــــمــــظـــم الانــــــــــســق
Intelligent Medical Systems Department

Subject: Data Structure

Class: Second

Lecturer: Prof.Dr. Mehdi Ebady Manaa

Lecture: (8)

Doubly Linked Lists

Al-Mustaqbal University
College of Sciences

 Intelligent Medical System Department

2 | P a g e

Doubly Linked Lists

 Let's examine another variation on the linked list: the doubly linked list. What's the advantage of a

doubly linked list? A potential problem with ordinary linked lists is that it's difficult to traverse

backward along the list. A statement like current=current.next steps to the next link, but

there's no corresponding way to go to the previous link.

For example, imagine a text editor in which a linked list is used to store the text. Each text line on the

screen is stored as a String object embedded in a link. When the editor's user moves the cursor

downward on the screen, the program steps to the next link to manipulate or display the new line.

But what happens if the user moves the cursor upward? In an ordinary linked list, you'd need to

return current (or its equivalent) to the start of the list and then step all the way down again to the

new current link. This isn't very efficient. You want to make a single step upward.

The doubly linked list provides this capability. It allows you to traverse backward as well as forward

through the list. The secret is that each link has two references to other links instead of one. The first

is to the next link, as in ordinary lists. The second is to the previous link. This is shown in Figure 1.

 first null
 null last

Figure (1) Double link list

 The beginning of the specification for the Link class in a doubly linked list looks like this:
class Link:

 def __init__(self, dData):

 self.dData = dData

 self.next = None

 self.previous = None

The downside of doubly linked lists is that every time you insert or delete a link you must deal with

four links instead of two: two attachments to the previous link and two attachments to the following

one. Also, of course, each link is a little bigger because of the extra reference.

Traversal

 Two display methods demonstrate traversal of a doubly linked list. The displayForward()

method is the same as the displayList() method we've seen in ordinary linked lists. The

displayBackward() method is similar, but starts at the last element in the list and proceeds

toward the start of the list, going to each element's previous field. This code fragment shows how

this works:

current = last # Start at the end

P N

P N P N

Al-Mustaqbal University
College of Sciences

 Intelligent Medical System Department

3 | P a g e

while current is not None: # Until the start of the list

 current = current.previous # Move to the previous link

Insertion

We've included several insertion routines in the DoublyLinkedList class. In addition, the

insertFirst() method inserts at the beginning of the list, insertLast() inserts at the end,

and insertAfter() inserts following an element with a specified key.

Unless the list is empty, the insertFirst() routine changes the previous field in the old

first link to point to the new link, and changes the next field in the new link to point to the old

first link. Finally it sets first to point to the new link. This is shown in Figure 2.

 Old first

 null

 last

New first 2

 3 1

New

null

Figure (2) insertion at first of Double link list

If the list is empty, then the last field must be changed instead of the first.previous field.
Here's the code in python :

if self.is_empty(): # If the list is empty

 self.last = new_link # newLink <-- last

else:

 self.first.previous = new_link # newLink <-- old first

new_link.next = self.first # newLink --> old first

self.first = new_link # first --> newLink

The code in above inserts a new link into the doubly linked list, either at the beginning (if the list is

not empty) or as the first element (if the list is empty). The code properly adjusts the next and

previous references to maintain the doubly linked structure. new_link.next = self.first: Here, it sets

the next reference of the new_link to point to the old first element. This effectively connects the

new_link as the next element after the old first. It's a bit more complicated because four connections

must be made. First the link with the specified key value must be found. Then, assuming we're not at

the end of the list, two connections must be made between the new link and the next link, and two

more between self and the new link. This is shown in Figure 3.

P N

P N

P N

Al-Mustaqbal University
College of Sciences

 Intelligent Medical System Department

4 | P a g e

 Current

first null

null last

 4 1

 3 new 2

Figure (3) insertion aftert a location in Double link list

 If the new link will be inserted at the end of the list, then its next field must point to null, and

last must point to the new link. It inserts a newLink into a doubly linked list, and it properly

updates the next and previous references to maintain the doubly linked structure.
if current == last: # If it's the last link

 newLink.next = None # newLink --> None

 last = newLink # newLink <-- last

else: # If it's not the last link

 newLink.next = current.next # newLink --> old next

 # newLink <-- old next

 current.next.previous = newLink

newLink.previous = current # old current <-- newLink

current.next = newLink # old current --> newLink

Deletion

 There are three deletion routines: deleteFirst(), deleteLast(), and deleteKey(). The

first two are fairly straightforward. In deleteKey(), the key being deleted is current.

Assuming the link to be deleted is neither the first nor the last one in the list, then the next field of

current.previous (the link before the one being deleted) is set to point to current.next

(the link following the one being deleted), and the previous field of current.next is set to

point to current.previous. This disconnects the current link from the list. Figure 4 shows

how this disconnection looks, and the following two statements carry it out:

 1

 Current.previous Current Current.next

first null null

null last last

 2

P N P N P N

P N

P N

P N

P N

P N

Al-Mustaqbal University
College of Sciences

 Intelligent Medical System Department

5 | P a g e

Figure (4) deletion in Double link list

current.previous.next = current.next

current.next.previous = current.previous

Special cases arise if the link to be deleted is either the first or last in the list, because first or

last must be set to point to the next or the previous link. Here's the code from deleteKey() for

dealing with link connections:

if current == first: # first item?

 first = current.next # first --> old next

else: # not first

 current.previous.next = current.next # old previous --> old

next

if current == last: # last item?

 last = current.previous # old previous <-- last

else: # not last

 current.next.previous = current.previous # old previous <--

old next

Deletion by Item Value

To delete the element by value:

 Find the node that contains the item with the specified value.

 delete the node.

 The reference of the node before the item is set to the node that

exists after the item being deleted.

def delete_element_by_value(self, x):

 if self.start_node is None:

 print("The list has no element to delete")

 return

 # Deleting the first node

Al-Mustaqbal University
College of Sciences

 Intelligent Medical System Department

6 | P a g e

 if self.start_node.item == x:

 self.start_node = self.start_node.ref

 return

 n = self.start_node

 while n.ref is not None:

 if n.ref.item == x:

 break

 n = n.ref

 if n.ref is None:

 print("Item not found in the list")

 else:

 n.ref = n.ref.ref

HW.

1- How can count the number of nodes in linked list?

2- How can search to find node in linked list ?

