Al-Mustagbal University
College of Sciences
Intelligent Medical System Department

AL MUSTAQBAL UNIVERSITY

polll auls
Qs _Jla _o_b iVl oo a9

Qs

Lecture: (8)

Abstraction and Interfaces in OOP

Subject: Object oriented programming |
Class: Second

Study Year: 2024-2025

' Al-Mustagbal University

College of Sciences

@ Intelligent Medical System Department

ho

Abstraction and Interfaces in OOP

Data abstraction is one of the most essential concepts of Python OOPs which is
used to hide irrelevant details from the user and show the details that are relevant
to the users.

A simple example of this can be a car. A car has an accelerator, clutch, and break
and we all know that pressing an accelerator will increase the speed of the car and
applying the brake can stop the car but we don’t know the internal mechanism of

the car and how these functionalities can work this detail hiding is known as data

abstraction.

To understand data abstraction we should be aware of the below basic concepts:
« OOP concepts in Python
« Classes in Python

« Abstract classes in Python

Importance of Data Abstraction

It enables programmers to hide complex implementation details while just showing
users the most crucial data and functions. This abstraction makes it easier to design
modular and well-organized code, makes it simpler to understand and maintain,
promotes code reuse, and improves developer collaboration.

Data Abstraction in Python

Data abstraction in Python is a programming concept that hides complex
implementation details while exposing only essential information and
functionalities to users. In Python, we can achieve data abstraction by using
abstract classes and abstract classes can be created using abc (abstract base class)
module and abstract method of abc module.

Study Year: 2024-2025

' Al-Mustagbal University

A @5 College of Sciences
&/ Intelligent Medical System Department

Abstraction classes in Python

Abstract class is a class in which one or more abstract methods are defined. When
a method is declared inside the class without its implementation is known as
abstract method.

Abstract Method: In Python, abstract method feature is not a default feature. To
create abstract method and abstract classes we have to import the “ABC” and
“abstractmethod” classes from abc (Abstract Base Class) library. Abstract
method of base class force its child class to write the implementation of the all
abstract methods defined in base class. If we do not implement the abstract
methods of base class in the child class then our code will give error. In the below
code method 1 is a abstract method created using @abstractmethod decorator.

from abc import ABC, abstractmethod
class BaseClass (ABC) :
@abstractmethod
def method 1 (self):
#empty body
pass

Concrete Method: Concrete methods are the methods defined in an abstract base
class with their complete implementation. Concrete methods are required to avoid
reprication of code in subclasses. For example, in abstract base class there may be
a method that implementation is to be same in all its subclasses, so we write the
implementation of that method in abstract base class after which we do not need to
write implementation of the concrete method again and again in every subclass. In
the below code startEngine is a concrete method.

class Car (ABC) :
def init (self, brand, model, year):
self.brand brand
self.model model
self.year = year
self.engine started = True

startEngine (self) :

if not self.engine started:
print (f"Starting the {self.model}'s engine.")
self.engine started = True

else:
print ("Engine is already running.")

Page |3 Study Year: 2024-2025

Al-Mustagbal University

| @5 ! College of Sciences
&/ Intelligent Medical System Department

Steps to Create Abstract Base Class and Abstract Method:

1. Firstly, we import ABC and abstractmethod class from abc (Abstract Base
Class) library.

. Create a BaseClass that inherits from the ABC class. In Python, when a class
inherits from ABC, it indicates that the class is intended to be an abstract
base class.

. Inside BaseClass we declare an abstract method named “method 1” by
using “abstractmethod” decorater. Any subclass derived from BaseClass
must implement this method_1 method. We write pass in this method which
indicates that there is no code or logic in this method.

from abc import ABC, abstractmethod
class BaseClass (ABC) :
@abstractmethod
def method 1 (self):
#empty body
pass

Implementation of Data Abstraction in Python

In the below code, we have implemented data abstraction using abstract class and
method. Firstly, we import the required modules or classes from abc library then
we create a base class ‘Car’ that inherited from ‘ABC’ class that we have imported.
Inside base class we create init function, abstract function and non-abstract
functions. To declare abstract function printDetails we use “@abstractmethod”
decorator. After that we create child class hatchback and suv. Since, these child
classes inherited from abstract class so, we need to write the implementation of all
abstract function declared in the base class. We write the implementation of
abstract method in both child class. We create an instance of a child class and call
the printDetails method. In this way we can achieve the data abstraction.

Import required modules
from abc import ABC, abstractmethod

Create Abstract base class
class Car (ABC) :
def init (self, brand, model, year):
self.brand = brand

Page |4 Study Year: 2024-2025

Al-Mustagbal University
College of Sciences
Intelligent Medical System Department

self.model
self.year

model
year

Create abstract method

@abstractmethod

def printDetails (self):
pass

Create concrete method
def accelerate(self):
print ("Speed up .M
def break applied(self):
print ("Car stopped")

Create a child class
class Hatchback (Car) :
def printDetails (self):

print ("Brand:",
print ("Model:",
print ("Year:",

def sunroof (self):
print ("Not havi

Create a child class
class Suv (Car) :
def printDetails (se
print ("Brand:",
print ("Model:",
print ("Year:",

self.brand)
self.model)
self.year)

ng this feature")

1f):
self.brand)
self.model)

self.year)

def sunroof (self):
print ("Available")

Create an instance of the Hatchback class
carl = Hatchback ("Maruti", "Alto", "2022")

Call methods
carl.printDetails ()
carl.accelerate()
carl.sunroof ()

Output

Brand: Maruti
Model: Alto
Year: 2022
speed up

Study Year: 2024-2025

Page |5

Al-Mustagbal University
College of Sciences
Intelligent Medical System Department

from abc import ABC, abstractmethod

oo S
class Animal (ABC) :
@abstractmethod
def sound(self):
pass

00 &y @S Animal 41 adl Gy sound
class Dog(Animal) :
def sound(self):
return "Woof"

class Cat (Animal) :
def sound(self):
return "Meow"

Loy i el W iwld
animals = [Dog (), Cat()]

for animal in animals:
print (animal.sound())

from abc import ABC, abstractmethod

#oadadl dgaly Jhe s @S
class Payment (ABC) :
@abstractmethod
def process payment (self, amount):
pass

oL LoY) A8l al Wl gdadl wils
class CreditCardPayment (Payment) :
def process payment (self, amount) :
print (f"Processing credit card payment of ${amount}")

e gdall @S PayPal
class PayPalPayment (Payment) :
def process payment (self, amount):
print (f"Processing PayPal payment of ${amount}")

o Sy daaxae ! yue gBadl @S
class WalletPayment (Payment) :
def process payment (self, amount):
print (f"Processing wallet payment of ${amount}")

ol al WS

def make payment (payment method, amount):

Page |6 Study Year: 2024-2025

Al-Mustagbal University
College of Sciences
Intelligent Medical System Department

payment method.process payment (amount)

#olalialdl gdadl Gub ooy
credit card = CreditCardPayment ()
paypal = PayPalPayment ()

wallet WalletPayment ()

make payment (credit card, 100) oLy A5l Goyb e gdall
make payment (paypal, 200) # ,oe @gbull PayPal
make payment (wallet, 50) o Sy daaxa) jae gu]

https://www.programiz.com/online-compiler/6dsr5GUN2h36L

from abc import ABC, abstractmethod

LSl B s @S
class Vehicle (ABC) :
@abstractmethod
def move (self):
pass

om0 Sy By Lwdl JSo wiS Vehicle
class Car (Vehicle):
def move (self):
print ("The car is driving on the road.")

oo &g oyl Jdey @S Vehicle
class Bicycle (Vehicle):
def move (self) :
print ("The bicycle is being pedaled on the path.")

om0 Sy oy L S wis Vehicle
class Boat (Vehicle) :
def move (self):
print ("The boat is sailing on the water.")

LA O S G S | RO B S U By O 5 R U N S BV G S S
def transport (vehicle):
vehicle.move ()

#odisadl oliSyall gl g3l anyxs
car = Car ()

bicycle = Bicycle()

boat = Boat ()

transport (car)
transport (bicycle)
transport (boat)

Page |7 Study Year: 2024-2025

https://www.programiz.com/online-compiler/6dsr5GUN2h36L

Al-Mustagbal University
College of Sciences
Intelligent Medical System Department

https://www.programiz.com/online-compiler/1tHom2CeSMDwT

from abc import ABC, abstractmethod

class Employee(ABC):
@abstractmethod
def calculate_salary(self):
pass

o Spp LS slet, bl i S Employee
class FullTimeEmployee(Employee):

def __init__ (self, monthly_salary):
self.monthly_salary = monthly_salary

def calculate_salary(self):
return f"Full-time employee salary is: ${self.monthly_salary}"

e ooy Jinadl absl ke s Employee
class Freelancer(Employee):
def __init_ (self, hourly_rate, hours_worked):
self.hourly_rate = hourly_rate
self.hours_worked = hours_worked

def calculate_salary(self):
return f'Freelancer salary is: ${self.hourly_rate * self.nours_worked}"

H adond) il Clyy oled syl pusns 2l
def print_salary(employee):
print(employee.calculate_salary())

ailod) bl gl (o4
full_time_employee = FullTimeEmployee(3000)
freelancer = Freelancer(25, 120)

print_salary(full_time_employee) # L\ slsy Cilss
print_salary(freelancer) # Jizes absse

https://www.programiz.com/online-compiler/68tzUg5cxDBFo

Study Year: 2024-2025

https://www.programiz.com/online-compiler/1tHom2CeSMDwT
https://www.programiz.com/online-compiler/68tzUg5cxDBFo

Al-Mustagbal University

@ : College of Sciences
\ Intelligent Medical System Department

from abc import ABC, abstractmethod

=y J.‘.C, 32 IS
class Patient(ABC):
@abstractmethod
def assess_health(self):
pass

B o Sns oS L S Patient
class DiabetesPatient(Patient):
def _init_ (self, blood_sugar_level):
self.blood_sugar_level = blood_sugar_level

def assess_health(self):
if self.blood_sugar_level < 70:
return "Diabetes patient condition: Hypoglycemia (low blood sugar)"
elif self.blood_sugar_level > 180:
return "Diabetes patient condition: Hyperglycemia (high blood sugar)"
else:
return "Diabetes patient condition: Normal blood sugar level"

oo g el Las e s 5 Patient
class HypertensionPatient(Patient):
def __init__ (self, systolic, diastolic):
self.systolic = systolic
self.diastolic = diastolic

def assess_health(self):
if self.systolic > 140 or self.diastolic > 90:
return "Hypertension patient condition: High blood pressure”
elif self.systolic < 90 or self.diastolic < 60:

return "Hypertension patient condition: Low blood pressure”
else:

return "Hypertension patient condition: Normal blood pressure”

o) ol U i bl s @i
def evaluate_patient(patient):
print(patient.assess_health())

kol ol el (o2
diabetes_patient = DiabetesPatient(160)

Page |9 Study Year: 2024-2025

) Al-Mustagbal University

1@5: College of Sciences
N7/ Intelligent Medical System Department

A3

hypertension_patient = HypertensionPatient(130, 85)

evaluate_patient(diabetes_patient) — # ¢S a0 U oo
evaluate_patient(hypertension_patient) # il bao 20 U oo

https://www.programiz.com/online-compiler/2pgSM2odgYirl

Python-interface module

In object-oriented languages like Python, the interface is a collection of method
signatures that should be provided by the implementing class. Implementing an
interface is a way of writing an organized code and achieve abstraction.

The package zope.interface provides an implementation of “object interfaces” for
Python. It is maintained by the Zope Toolkit project. The package exports two
objects, ‘Interface’ and ‘Attribute’ directly. It also exports several helper methods.
It aims to provide stricter semantics and better error messages than Python’s built-
in abc module.

Declaring interface

In python, interface is defined using python class statements and is a subclass of
interface.Interface which is the parent interface for all interfaces.

Syntax :

class IMyInterface (zope.interface.Interface):
methods and attributes

Example

Output :

<class zope.interface.interface.InterfaceClass>
__main
MyInterface

Page | 10 Study Year: 2024-2025

https://www.programiz.com/online-compiler/2pgSM2odqYlr1

Al-Mustagbal University

@ : College of Sciences
\ Intelligent Medical System Department

<zope.interface.interface.Attribute object at 0x00000270A8C74358>
<class 'zope.interface.interface.Attribute'>

Implementing interface

Interface acts as a blueprint for designing classes, so interfaces are implemented
using implementer decorator on class. If a class implements an interface, then the
instances of the class provide the interface. Objects can provide interfaces directly,
in addition to what their classes implement.

Syntax :
@zope.interface.implementer (*interfaces)
class Class_name:

methods

Example

import zope.interface

class MyInterface (zope.interface.Interface):
x = zope.interface.Attribute ("foo")
def methodl (self, x):
pass
def method2 (self) :
pass

@zope.interface.implementer (MyInterface)
class MyClass:
def methodl (self, x):
return x**2
def method2 (self) :
return "foo"

We declared that MyClass implements Myinterface. This means that instances of
MyClass provide Myinterface.

Methods

. implementedBy(class) — returns a boolean value, True if class implements
the interface else False

Page |11 Study Year: 2024-2025

Al-Mustagbal University
College of Sciences
Intelligent Medical System Department

providedBy(object) — returns a boolean value, True if object provides the
interface else False

providedBy(class) — returns False as class does not provide interface but
implements it

list(zope.interface.implementedBy(class)) — returns the list of interfaces
implemented by a class

list(zope.interface.providedBy(object)) — returns the list of interfaces
provided by an object.

list(zope.interface.providedBy(class)) — returns empty list as class does not
provide interface but

implements it.

import zope.interface

class MyInterface (zope.interface.Interface):
x = zope.interface.Attribute ('foo')
def methodl (self, x, vy, z):
pass
def method2 (self) :
pass

@zope.interface.implementer (MyInterface)
class MyClass:
def methodl (self, x):
return x**2
def method2 (self) :
return "foo"
obj = MyClass ()

ask an interface whether it
is implemented by a class:
print (MyInterface.implementedBy (MyClass))

MyClass does not provide
MyInterface but implements it:
print (MyInterface.providedBy (MyClass))

ask whether an interface
is provided by an object:
print (MyInterface.providedBy (obj))

ask what interfaces are

Page |12 Study Year: 2024-2025

Al-Mustagbal University
College of Sciences
Intelligent Medical System Department

implemented by a class:
print (list (zope.interface.implementedBy (MyClass)))

ask what interfaces are
provided by an object:
print (list (zope.interface.providedBy (obj)))

class does not provide interface
print (list (zope.interface.providedBy (MyClass)))

Output :

True
False
True
[<InterfaceClass main_ .MyInterface>]
[<InterfaceClass main_ .MylInterface>]

(]

Interface Inheritance

Interfaces can extend other interfaces by listing the other interfaces as base
interfaces.

Functions

extends(interface) — returns boolean value, whether one interface extends
another.

ISOrExtends(interface) — returns boolean value, whether interfaces are
same or one extends another.

isEqualOrExtendedBy(interface) — returns boolean value, whether
interfaces are same or one is extended by another.

import zope.interface

class BaseI (zope.interface.Interface):
def ml (self, x):
pass
def m2 (self) :
pass

Page | 13 Study Year: 2024-2025

Al-Mustagbal University
College of Sciences
Intelligent Medical System Department

class DerivedI (Basel) :
def m3(self, x, vy):
pass

@zope.interface.implementer (DerivedI)
class cls:
def ml (self, z):
return z**3
def m2 (self) :
return 'foo'
def m3 (self, x, vy):
returnx "~y

Get base interfaces
print (DerivedI. bases)

Ask whether basel extends
DerivedI
print (Basel.extends (DerivedI))

Ask whether baselI is equal to
or is extended by DerivedI
print (Basel.isEqualOrExtendedBy (DerivedI))

Ask whether baselI is equal to
or extends DerivedI
print (Basel.isOrExtends (DerivedI))

Ask whether DerivedI is equal
to or extends Basel
print (DerivedI.isOrExtends (DerivedI))

Output :

(<InterfaceClass _ main__.BaseI>,)
False
True
False
True

Study Year: 2024-2025

