Z-TRANSFORM-PART-1 By Dr. Abdullah Jabar Hussain

Z TRANSFORM

DEFINATION OF Z TRANSFORM

Z TRANSFORM DEALS WITH DISCRETE FUNCTION.

In mathematics and signal processing, the Z-transform converts a discrete-time signal, which is a sequence of real or complex numbers, into a complex frequency-domain representation. It can be considered as a discrete-time equivalent of the Laplace transform.

The general definition of z transform that x(n) is the sequence of discrete time signal and it is used in digital system, signal analysis and stability. Now;

$$X(n) = \sum_{z=1}^{\infty} X(z) = \sum_{-\infty}^{\infty} x(n)z^{-n}$$

If x(n) casual sequence i.e. for n greater than zero n > 0 and x(n) = 0 for n < 0

And we have to remember that z is complex variable then according to that

$$X(z) = \sum_{0}^{\infty} x(n) z^{-n}$$
 so according to this

$$X(z) = x(0) z^{0} + x(1)z^{-1} + x(2)z^{-2} + x(3)z^{-3} \dots$$

Now the most important is the region of convergence "ROC" which represent the region with x(z) become finite i.e. set of all values of z which make x(z) finite value

For any function there is x(z) And for any function there is ROC

EX: let x(n) = u(n) find x(z)

Here the sequence is unit step function for n≥0 then its value equal unity.

Then,

$$X(z) = X(z) = \sum_{n=0}^{\infty} x(n) z^{-n}$$

As x(n) = 1

Then,

 $X(z) = \sum_{0}^{\infty} z^{-n}$ and we can write it as follows:

$$X(z) = \sum_{0}^{\infty} (z^{-1})^n$$

$$X(z)=1+z^{-1}+z^{-2}+z^{-3}+\ldots\ldots$$

The standard for series is as follows:

$$1 + r + r^2 + r^3 + \dots = \frac{1}{1-r}$$
 when $|r| < 1$

If we compare this series with the series of x(z) Then,

$$X(z) = 1 + (z^{-1})^1 + (z^{-1})^2 + (z^{-1})^3 + \dots$$

Then the second term is equivalent to r So,

$$X(z) = \frac{1}{1-z^{-1}}$$
 if and only if $|z^{-1}| < 1$

In other word |z| > 1

and this is the radius of convergence ROC.

out side the radius of the circle is the "ROC" i.e. $\ |z| > 1$

EXAMPLE 2:

IF $x(n) = a^n u(n)$, find x(z)

Any sequence multiply by unit step function for n grater or equal to zero and it is called casual function

Therefore,

$$X(z) = \sum_{0}^{\infty} x(n) z^{-n} = X(z) = \sum_{0}^{\infty} a^{n} u(n) z^{-n}$$

$$= X(z) = \sum_{0}^{\infty} a^{n} z^{-n} = X(z) = \sum_{0}^{\infty} 1 (az^{-1})^{n}$$

$$= \frac{1}{1 - az^{-1}} = \frac{1}{1 - \frac{a}{z}} = \frac{z}{z - a}$$

Therefore, ROC= |Z| > a

Example:

Find the z – transform for the sequence x(n) as shown in the following figure

$$X(z) = \sum_{-\infty}^{+\infty} x(n) z^{-n}$$

$$X(n) = \delta(n) + \delta(n-1) + \delta(n-2) + \delta(n-3) + \delta(n-4)$$

: ولغرض المقارنه لدينا صيغه معروفه كما يلي:

$$\sum_{k=0}^{n} r^k = \frac{r^{n+1} - 1}{r - 1}$$

From equation of x(z) then,

$$X(z) = 1 + \frac{1}{z} + \frac{1}{z^2} + \frac{1}{z^3} + \frac{1}{z^4}$$

Then,

$$\sum_{n=0}^{n=4} (z^{-1})^{**}$$
n

So, according to the following:

$$\sum_{k=0}^{n} r^k = \frac{r^{n+1}-1}{r-1}$$

Then,

$$X(z) = \frac{(z^{-1})^5 - 1}{z^{-1} - 1} = \frac{z}{z - 1} (1 - z^{-5})$$

Then how to find ROC

اتجنب قيم z التي تجعل (x(z) مالانهايه

NOTE:

1-It is important to mention that if it is casual, x(n) = 0 for n less than zero.

ROC i.e. |z| greater than r1

2. If the sequence is anti casual i.e. x(n) = 0 for n greater than zero.

3. Two sides sequences i.e. Casual + anti casual

ROC for , r2 > |z| > r1 i.e. the red color region

No.	X(n) , n ≥0	Z(x)	ROC
1	δ (n)	1	z >0
2	u(n)	$\frac{1}{1-z^{-1}} = \frac{z}{z-1}$	z >1
3	a u(n) a= constant	$\frac{az}{z-1}$	z >1
4	n u(n), n =variable	$\frac{z}{(z-1)^2}$	z >1
5	n^2 u(n)	$\frac{z(z+1)}{(z-1)^3}$	z >1
6	a^n u (n)	$\frac{z}{z-a}$	z >a
7	e^{-na} u(n)	$\frac{z}{z - e^{-a}}$	$ z > e^{-a}$
8	Sin(an) u(n)	$\frac{z\sin a}{z^2 - 2z\cos a + 1}$	z >1
9	cos (an) u(n)	$\frac{z\left\{z - \cos(a)\right\}}{z^2 - 2z\cos a + 1}$	z > a
10	a^n sin(b n) u(n)	$\frac{(a \sin b)z}{z^2 - (2a \cos b)z + b^2}$	z > a

Examples:

1.

$$Z\{a^n\} = \frac{z}{z-a}$$

$$Z\{a^n\} = \sum_{n=0}^{\infty} a^n z^{-n}$$

$$= 1 + \frac{a}{z} + \frac{a^2}{z^2} + \frac{a^3}{z^3} + \dots + \frac{a^n}{z^n} + \dots$$

$$= \frac{1}{1 - \frac{a}{z}}, \quad \left| \frac{a}{z} \right| < 1$$

$$\therefore Z\{a^n\} = \frac{z}{z-a} \ , \quad \left| \frac{a}{z} \right| < 1$$

2.

$$Z\{1\} = \frac{z}{z-1}$$

$$Z\{1\} = \frac{z}{z-1}$$

Putting a = 1 in Result 1