
2520-4Study Year: 202

مــــــــــــــــــــــــــن الــــــــــــــــــــــــــــــــــــسيبرانــــــــــــــــــــــــــــــــــــي م ال ـــــــ ـــس ــق

Department of Cyber Security

Subject: Data Structure

Class: Second

Lecturer: Asst. Prof. Dr. Ali Kadhum Al-Quraby

Lecture : 5
LINEAR LIST

28

UNIT-III
LINEAR LIST

INTRODUCTION
Linear Data Structures:
Linear data structures are those data structures in which data elements are accessed (read
and written) in sequential fashion (one by one). Ex: Stacks, Queues, Lists, Arrays
Non Linear Data Structures:
Non Linear Data Structures are those in which data elements are not accessed in sequential
fashion.
Ex: trees, graphs
Difference between Linear and Nonlinear Data Structures
Main difference between linear and nonlinear data structures lie in the way they organize
data elements. In linear data structures, data elements are organized sequentially and
therefore they are easy to implement in the computer’s memory. In nonlinear data
structures, a data element can be attached to several other data elements to represent
specific relationships that exist among them. Due to this nonlinear structure, they might be
difficult to be implemented in computer’s linear memory compared to implementing linear
data structures. Selecting one data structure type over the other should be done carefully
by considering the relationship among the data elements that needs to be stored.

LINEAR LIST
A data structure is said to be linear if its elements form a sequence. A linear list is a list that
displays the relationship of adjacency between elements.
A Linear list can be defined as a data object whose instances are of the form (e1, e2, e3…en)
where n is a finite natural number. The ei terms are the elements of the list and n is its
length. The elements may be viewed as atomic as their individual structure is not relevant to
the structure of the list. When n=0, the list is empty. When n>0,e1 is the first element and en
the last. Ie;e1 comes before e2, e2 comes before e3 and so on.
Some examples of the Linear List are

 An alphabetized list of students in a class

 A list of exam scores in non decreasing order

 A list of gold medal winners in the Olympics

 An alphabetized list of members of Congress
The following are the operations that performed on the Linear List

 Create a Linear List
 Destroy a Linear List
 Determine whether the list is empty
 Determine the size of the List
 Find the element with a given index
 Find the index of a given number
 Delete, erase or remove an element given its index
 Insert a new element so that it has a given index

A Linear List may be specified as an abstract Data type (ADT) in which we provide a
specification of the instance as well as of the operations that are to be performed. The
below abstract data type omitted specifying operations to create and destroy instance of
the data type. All ADT specifications implicitly include an operation to create an empty
instance and optionally, an operation to destroy an instance.

29

Array Representation: (Formula Based Representation)
A formula based representation uses an array to represent the instance of an object. Each
position of the Array is called a Cell or Node and is large enough to hold one of the elements
that make up an instance, while in other cases one array can represent several instances.
Individual elements of an instance are located in the array using a mathematical formula.

Suppose one array is used for each list to be represented. We need to map the
elements of a list to positions in the array used to represent it. In a formula based
representation, a mathematical formula determines the location of each element. A simple
mapping formulas is

This equation states that the ith element of the list is in position i-1 of the array. The below
figure shows a five element list represented in the array element using the mapping of
equation.
To completely specify the list we need to know its current length or size. For this purpose
we use variable length. Length is zero when list is empty. Program gives the resulting C++
class definition. Since the data type of the list element may vary from application to
application, we have defined a template class in which the user specifies the element data
type T. the data members length, MaxSize and element are private members are private
members, while the remaining members are public. Insert and delete have been defined to
return a reference to a linear list.
Insertion and Deletion of a Linear List:
Suppose we want to remove an element ei from the list by moving to its right down by 1.For
example, to remove an element e1=2 from the list,we have to move the elements e2=4,
e3=8,and e4=1,which are to the right of e1, to positions 1,2 and 3 of the array element. The
below figure shows this result. The shaded elements are moved.

Location (i) = i-1

30

To insert an element so that it becomes element I of a list, must move the existing element
ei and all elements to its right one position right and then put the new element into position
I of the array. For example to insert 7 as the second element of the list, we first move
elements e2 and e3 to the right by 1 and then put 7 in to second position 2 of the array. The
below figure shows this result. The shaded elements were moved.

Linked Representation And Chains
In a linked list representation each element of an instance of a data object is represented in
a cell or node. The nodes however need not be component of an array and no formula is
used to locate individual elements. Instead of each node keeps explicit information about
the location of other relevant nodes. This explicit information about the location of another
node is called Link or Pointer.
Let L=(e1, e2, e3…en) be a linear List. In one possible linked representation for this list, each
element ei is represented in a separate node. Each node has exactly one link field that is
used to locate the next element in the linear list. So the node for ei links to that for ei+1,
0<=i<n-1. The node for en-1 has no need to link to and so its link field is NULL. The pointer
variables first locate the first node in the representation. The below figure shows the linked
representation of a List=(e1, e2, e3…en).

Since each node in the Linked representation of the above figure has exartly one link, the
structure of this figure is called a ‘Single Linked List’.the nodes are ordered from left to right
with each node (other than last one) linking to the next,and the last node has a NULL
link,the structure is also called a chain.

Insertion and Deletion of a Single Linked List:
Insertion Let the list be a Linked list with succesive nodes A and B as shown in below
figure.suppose a node N id to be inserted into the list between the node A and B.

31

In the New list the Node A points to the new Node N and the new node N points to the node
B to which Node A previously pointed.
Deletion:
Let list be a Linked list with node N between Nodes A and B is as shown in the following
figure.

32

 In the new list the node N is to be deleted from the Linked List. The deletion occurs as the
link field in the Node A is made to point node B this excluding node N from its path.

DOUBLE LINKED LIST (Or) TWO WAY LINKED LIST

In certain applications it is very desirable that list be traversed in either forward direction or
Back word direction. The property of Double Linked List implies that each node must contain
two link fields instead of one. The links are used to denote the preceding and succeeding of
the node. The link denoting the preceding of a node is called Left Link. The link denoting
succeeding of a node is called Right Link. The list contain this type of node is called a
“Double Linked List” or “Two Way List”. The Node structure in the Double Linked List is as
follows:

Lptr contains the address of the before node. Rptr contains the address of next node. Data
Contains the Linked List is as follows.

In the above diagram Last and Start are pointer variables which contains the address of last
node and starting node respectively.
Insertion in to the Double Linked List:Let list be a double linked list with successive modes A
and B as shown in the following diagram. Suppose a node N is to be inserted into the list
between the node s A and B this is shown in the following diagram.

33

As in the new list the right pointer of node A points to the new node N ,the Lptr of the node
‘N’ points to the node A and Rptr of node ‘N’ points to the node ‘B’ and Lpts of node B
points the new node ‘N’
Deletion Of Double Linked List :- Let list be a linked list contains node N between the nodes
A and B as shown in the following diagram.

Support node N is to be deleted from the list diagram will appear as the above mention
double linked list. The deletion occurs as soon as the right pointer field of node A charged,
so that it points to node B and the lift point field of node B is changed. So that it pointes to
node A.
Circular Linked List:- Circular Linked List is a special type of linked list in which all the nodes
are linked in continuous circle. Circular list can be singly or doubly linked list. Note that,
there are no Nulls in Circular Linked Lists. In these types of lists, elements can be added to
the back of the list and removed from the front in constant time.
 Both types of circularly-linked lists benefit from the ability to traverse the full list beginning
at any given node. This avoids the necessity of storing first Node and last node, but we need
a special representation for the empty list, such as a last node variable which points to some
node in the list or is null if it's empty. This representation significantly simplifies adding and
removing nodes with a non-empty list, but empty lists are then a special case. Circular
linked lists are most useful for describing naturally circular structures, and have the
advantage of being able to traverse the list starting at any point. They also allow quick
access to the first and last records through a single pointer (the address of the last element)

34

Circular single linked list:

Circular linked list are one they of liner linked list. In which the link fields of last node of the
list contains the address of the first node of the list instead of contains a null pointer.
Advantages:- Circular list are frequency used instead of ordinary linked list because in
circular list all nodes contain a valid address. The important feature of circular list is as
follows.
(1) In a circular list every node is accessible from a given node.
(2) Certain operations like concatenation and splitting becomes more efficient in circular
list.
Disadvantages: Without some conditions in processing it is possible to get into an infinite
Loop.
Circular Double Linked List :- These are one type of double linked list. In which the rpt field
of the last node of the list contain the address of the first node ad the left points of the first
node contains the address of the last node of the list instead of containing null pointer.

Advantages:- circular list are frequently used instead of ordinary linked list because in
circular list all nodes contained a valid address. The important feature of circular list is as
follows.
(1) In a circular list every node is accessible from a given node.
(2) Certain operations like concatenation and splitting becomes more efficient
 in circular list.
Disadvantage:-Without some conditions in processes it is possible to get in to an infant glad.

Difference between single linked list and double linked list?

Single linked list(SLL) Double linked list(DLL)

1.In Single Linked List the list will be traversed
in only one way ie; in forward.
2. In Single Linked List the node contains one
link field only.
3. Every node contains the address of next
node.
4.The node structure in Single linked list is as
follows:

1. In Double Linked List the list will be
traversed in two way ie; either forward and
backward
2. In Double Linked List the node contains two
link fields.
3. Every node contains the address of next
node as well as preceding node.
4.the node structure in double linked list is as
follows:

35

5. The conceptual view of SLL is as follows:

6. SLL are maintained in memory by using two
arrays.

5.the conceptual view of DLL is as follows:

6. DLL is maintained in memory by using three
arrays.

2. Difference between sequential allocation and linked allocation?
 OR
Difference between Linear List and Linked List?
 OR
Difference between Arrays and Linked List?

Arrays Linked List

1. Arrays are used in the predictable storage
requirement ie; exert amount of data
storage required by the program can be
determined.

2. In arrays the operations such as insertion
and deletion are done in an inefficient
manner.

3. The insertion and deletion are done by
moving the elements either up or down.

4. Successive elements occupy adjacent
space on memory.

5. In arrays each location contain DATA only
6. The linear relation ship between the data
elements of an array is reflected by the
physical relation ship of data in the memory.

7. In array declaration a block of memory
space is required.

8.There is no need of storage of pointer or
lines

1. Linked List are used in the unpredictable
storage requirement ie; exert amount of data
storage required by the program can’t be
determined.

2. In Linked List the operations such as
insertion and deletion are done more
efficient manner ie; only by changing the
pointer.

3. The insertion and deletion are done by
only changing the pointers.

4. Successive elements need not occupy
adjacent space.

5. In linked list each location contains data
and pointer to denote whether the next
element present in the memory.

6. The linear relation ship between the data
elements of a Linked List is reflected by the
Linked field of the node.

7. In Linked list there is no need of such
thing.

36

9.The Conceptual view of an Array is as
follows:

10.In array there is no need for an element
to specify whether the next is stored

8. In Linked list a pointer is stored along into
the element.
9. The Conceptual view of Linked list is as
follows:

10. There is need for an element (node) to
specify whether the next node is formed.

	Lecture aaaaaaaaaaaaaaaaaaaaaaaaaaaa
	Lecture 4

