
2520-4Study Year: 202

مــــــــــــــــــــــــــن الــــــــــــــــــــــــــــــــــــسيبرانــــــــــــــــــــــــــــــــــــي م ال ـــــــ ـــس  ــق 

Department of Cyber Security 

Subject: Data Structure

Class: Second 

Lecturer:  Asst. Prof. Dr. Ali Kadhum Al-Quraby  

Lecture: 6

C++ Pointers



•  
C++ Pointers 
 

Pointers are symbolic representations of addresses. They enable 

programs to simulate call-by-reference as well as to create and 

manipulate dynamic data structures. Iterating over elements in arrays or 

other data structures is one of the main use of pointers.  

The address of the variable you’re working with is assigned to the pointer 

variable that points to the same data type (such as an int or string). 

 

Syntax: 

datatype *var_name;  

int *ptr;   // ptr can point to an address which holds int 

data 

 

How to use a pointer? 

• Define a pointer variable 

• Assigning the address of a variable to a pointer using the 

unary operator (&) which returns the address of that variable. 

• Accessing the value stored in the address using unary operator 

(*) which returns the value of the variable located at the 

address specified by its operand. 



The reason we associate data type with a pointer is that it knows how 

many bytes the data is stored in. When we increment a pointer, we 

increase the pointer by the size of the data type to which it points. To 

master the use of pointers and their applications, explore the C++ 

Course for comprehensive lessons and hands-on examples. 

 
// C++ program to illustrate Pointers 
 
#include <bits/stdc++.h> 
using namespace std; 
void geeks() 
{ 
    int var = 20; 
 
    // declare pointer variable 
    int* ptr; 
 
    // note that data type of ptr and var must be same 
    ptr = &var; 
 
    // assign the address of a variable to a pointer 
    cout << "Value at ptr = " << ptr << "\n"; 
    cout << "Value at var = " << var << "\n"; 
    cout << "Value at *ptr = " << *ptr << "\n"; 
} 
// Driver program 
int main()  
{  
  geeks();  
  return 0; 
} 

 

 

https://gfgcdn.com/tu/T6j/
https://gfgcdn.com/tu/T6j/


Output 

Value at ptr = 0x7ffe454c08cc 

Value at var = 20 

Value at *ptr = 20 

 

References and Pointers 
There are 3 ways to pass C++ arguments to a function: 

• Call-By-Value 
• Call-By-Reference with a Pointer Argument 
• Call-By-Reference with a Reference Argument 

 

// C++ program to illustrate call-by-methods 
 
#include <bits/stdc++.h> 
using namespace std; 
 
// Pass-by-Value 
int square1(int n) 
{ 
    // Address of n in square1() is not the same as n1 in 
    // main() 
    cout << "address of n1 in square1(): " << &n << "\n"; 
 
    // clone modified inside the function 
    n *= n; 
    return n; 
} 
// Pass-by-Reference with Pointer Arguments 
void square2(int* n) 
{ 
    // Address of n in square2() is the same as n2 in main() 
    cout << "address of n2 in square2(): " << n << "\n"; 
 
    // Explicit de-referencing to get the value pointed-to 
    *n *= *n; 
} 
// Pass-by-Reference with Reference Arguments 
void square3(int& n) 
{ 
    // Address of n in square3() is the same as n3 in main() 
    cout << "address of n3 in square3(): " << &n << "\n"; 
 
    // Implicit de-referencing (without '*') 
    n *= n; 
} 
void geeks() 



{ 
    // Call-by-Value 
    int n1 = 8; 
    cout << "address of n1 in main(): " << &n1 << "\n"; 
    cout << "Square of n1: " << square1(n1) << "\n"; 
    cout << "No change in n1: " << n1 << "\n"; 
 
    // Call-by-Reference with Pointer Arguments 
    int n2 = 8; 
    cout << "address of n2 in main(): " << &n2 << "\n"; 
    square2(&n2); 
    cout << "Square of n2: " << n2 << "\n"; 
    cout << "Change reflected in n2: " << n2 << "\n"; 
 
    // Call-by-Reference with Reference Arguments 
    int n3 = 8; 
    cout << "address of n3 in main(): " << &n3 << "\n"; 
    square3(n3); 
    cout << "Square of n3: " << n3 << "\n"; 
    cout << "Change reflected in n3: " << n3 << "\n"; 
} 
// Driver program 
int main() { geeks(); } 

 

Output 

address of n1 in main(): 0x7fffa7e2de64 

address of n1 in square1(): 0x7fffa7e2de4c 

Square of n1: 64 

No change in n1: 8 

address of n2 in main(): 0x7fffa7e2de68 

address of n2 in square2(): 0x7fffa7e2de68 

Square of n2: 64 

Change reflected in n2: 64 

address of n3 in main(): 0x7fffa7e2de6c 

address of n3 in square3(): 0x7fffa7e2de6c 

Square of n3: 64 

Change reflected in n3: 64 

 


	Intro
	C++ Pointers

