
2520-4Study Year: 202

 مــــــــــــــــــــــــــن الــــــــــــــــــــــــــــــــــــسيبرانــــــــــــــــــــــــــــــــــــي م ال ـــــــ ـــس ــق
Department of Cyber Security

Subject: Data Structure

Class: Second

Lecturer: Asst. Prof. Dr. Ali Kadhum Al-Quraby

Lecture: (4)

Implement a stack using singly linked list

Implement a stack using singly linked list

To implement a stack using the singly linked list concept, all the singly

linked list operations should be performed based on Stack operations

LIFO(last in first out) and with the help of that knowledge, we are going to

implement a stack using a singly linked list.

So we need to follow a simple rule in the implementation of a stack which is

last in first out and all the operations can be performed with the help of a

top variable. Let us learn how to perform Pop, Push, Peek, and Display

operations in the following article:

10/25/24, 4:36 PM

1/11

https://www.geeksforgeeks.org/stack-data-structure/
https://www.geeksforgeeks.org/data-structures/linked-list/
https://www.geeksforgeeks.org/

In the stack Implementation, a stack contains a top pointer. which is the

“head” of the stack where pushing and popping items happens at the head

of the list. The first node has a null in the link field and second node-link has

the first node address in the link field and so on and the last node address is

in the “top” pointer.

The main advantage of using a linked list over arrays is that it is possible to

implement a stack that can shrink or grow as much as needed. Using an

array will put a restriction on the maximum capacity of the array which can

lead to stack overflow. Here each new node will be dynamically allocated.

so overflow is not possible.

Stack Operations:

push(): Insert a new element into the stack i.e just insert a new element

at the beginning of the linked list.

pop(): Return the top element of the Stack i.e simply delete the first

element from the linked list.

peek(): Return the top element.

display(): Print all elements in Stack.

Push Operation:

Initialise a node

Update the value of that node by data i.e. node->data = data

Now link this node to the top of the linked list

And update top pointer to the current node

DSA Interview Problems on Stack Practice Stack MCQs on Stack Stack Tutorial Stack Operations Stack

10/25/24, 4:36 PM

: Pop Operation
2/11

https://www.geeksforgeeks.org/stack-push-and-pop-in-c-stl/
https://www.geeksforgeeks.org/stack-push-and-pop-in-c-stl/
https://www.geeksforgeeks.org/stack-peek-method-in-java/
https://www.geeksforgeeks.org/learn-data-structures-and-algorithms-dsa-tutorial/?ref=shm
https://www.geeksforgeeks.org/top-50-problems-on-stack-data-structure-asked-in-interviews/?ref=shm
https://www.geeksforgeeks.org/explore?page=1&category=Stack&sortBy=submissions&ref=shm
https://www.geeksforgeeks.org/quizzes/top-mcqs-on-stack-data-strcuture-with-answers/?ref=shm
https://www.geeksforgeeks.org/introduction-to-stack-data-structure-and-algorithm-tutorials/?ref=shm
https://www.geeksforgeeks.org/basic-operations-in-stack-data-structure-with-implementations/?ref=shm
https://www.geeksforgeeks.org/implement-a-stack-using-singly-linked-list/?ref=shm

First Check whether there is any node present in the linked list or

not, if not then return

Otherwise make pointer let say temp to the top node and move

forward the top node by 1 step

Now free this temp node

Peek Operation:

Check if there is any node present or not, if not then return.

Otherwise return the value of top node of the linked list

Display Operation:

Take a temp node and initialize it with top pointer

Now start traversing temp till it encounters NULL

Simultaneously print the value of the temp node

Below is the implementation of the above operations

10/25/24, 4:36 PM

3/11

#include <bits/stdc++.h>

using namespace std;

// Define a Node in the linked list

struct Node {

 int data;

 Node* next;

};

// Initialize the head of the stack as a nullptr

Node* head = nullptr;

// Function to check if the stack is empty

bool isEmpty() {

 return head == nullptr;

}

// Function to push an element onto the stack

void push(int new_data) {

 // Allocate memory for a new node

 Node* new_node = new Node();

 new_node->data = new_data;

 // Check if memory allocation for the new node failed

 if (!new_node) {

 cout << "\nStack Overflow" << endl;

 return;

 }

 // Link the new node to the current top node

 new_node->next = head;

 // Update the top to the new node

 head = new_node;

}

// Function to remove the top element from the stack

void pop() {

 // Check for stack underflow

 if (isEmpty()) {

 cout << "\nStack Underflow" << endl;

 return;

 }

 // Temporary variable to hold the current top node

 Node* temp = head;

 // Update the top to the next node

 head = head->next;

 // Free the memory of the old top node

 delete temp;

}

// Function to return the top element of the stack

int peek() {

 if (!isEmpty()) {

 return head->data;

 } else {

 cout << "\nStack is empty" << endl;

 return INT_MIN;

 }

}

// Driver function to test stack implementation

int main() {

 // Push elements onto the stack

 push(11);

 push(22);

 push(33);

 push(44);

 // Print top element of the stack

 cout << "Top element is " << peek() << endl;

 // Remove two elements from the top

 cout << "Removing two elements..." << endl;

 pop();

 pop();

 // Print top element of the stack

 cout << "Top element is " << peek() << endl;

 return 0;

}

	Lecture aaaaaaaaaaaaaaaaaaaaaaaaaaaa
	stack
	Implement a stack using singly linked list - GeeksforGeeks
	include

