Al-Mustagbal University
College of Sciences
Intelligent Medical System Department

Embedded
systems

Lecture 6 :
Memory I

Prof.Dr. Mehdi Ebady Manaa e

AL MUSTAQBAL UNIVERSITY
N 4

CPU Memory Interface

... g{%ﬁgﬁgg E‘?&%%

data bus

Write

(1) set address, read and size,
(2) copy data when ready is set by memory

- write:
(1) set address, data, write and size,
(2) done when ready is set

CPU Memory Interface

. Memorr subsystems
enerally consist of
chlps+controller

- [Each chip provides few bits
(e.g., 14) per access

— Bits from multiple chnF
are accessed in parallel to
fetch bytes and words

— Memory controller
decodes/translates
address and control

signals
— Controller can also be on
memory chip
- Example:

— contains 8 76x7bit chips
and very simple controller

address bu

CPU | wiite ,Memory

-
data bus
———

Read

< Ready

Size

e

@ 16x8-bit memory array =
0000 y—5H 5 3 5 0 1 0
0001 4—5 0 0 0O 0 0 1

addrest| -of-16

——*decoder

4
— 1111 =90 T 700 1 1

D7 D6 D5 D4 D3 D2 D1 DO

/
/

16x1-bit memory chip

. 4

Storage Basics

Address Bus Data Bus

Just because the CPU sees RAM as one long, thin
line of bytes doesn't mean that it's actually laidout
that way.

Real RAM chips don't store whole bytes, but rather
they storeindividual bits in a grid, which you can
address one bit at a time.

Types of memory.
Non Volatile >ROM/EPROM/FLASH.
Volatile > SRAM, DRAM

Internal organization

|

Mem Mem |__ Mem | | Mem
Cell Cell Cell Cell
| | | I
word i Mem Mem || | Mem || | Mem
. Cell Cell Cell Cell
lines
] | l |
Mem Mem | | | Mem | | | Mem
Cell Cell Cell Cell
- [[[|
Mem Mem | | | Mem | | | Mem
Cell Cell Cell Cell
What should be
the aspect ratio
(# rows vs #cols)?

|
bit lines

Different memory
types (e.g. SRAM vs
DRAM) are
distinguished by the
technology used to
implement the
memory cell, e.g.:

« SRAM: 6T

* DRAM: 1T/1C

An Example Memory Hierarchy

LO:

4 egister } CPU registers hold words retrieved

Smaller, from L1 cache.

faster, 1-/ on-chip L1
and cache {SRAM) L1 cache holds cache lines retrieved

L
costlier . } from the L2 cache memory.
(per byte) Lz/ off-chip L2 \
cache (SRAM) L2 cache holds cache lines

Storage retrieved from main memeory.

devices .
L3 main memory
Larger, (DRAM) . :
| Main memory holds disk
slower, blocks retrieved from local
and disks.
cheaper L4: local secondary storage
(per byte) (local disks)
storage Local disks hold files
devices retrieved from disks on
remote network servers.
L5 remote secondary storage

(distributed file systems, Web servers)

Local, Global and Static memory

A local variable is one that occurs within a specific scope. They exist
only in the function where they are created.

A global variable is a variable that is defined outside all functions and
available to all functions.

In local variables, static Is used to store the variable in the statically
allocated memory instead of the automatically allocated memory.

Statically allocated memory (global or static) is typically reserved in
data segment of the program at compile time.

Program Memory Map

STACK segment
(stack frames consisting of parameters. variable size
retum addresses and local vanables)

> free space

p * >
HEAP segment
@ . 0wl iable oi
managed by malioc(), free() elc.) !

Virtual address space of a process

B8SS segment size
(uninitialized giobal and static vanables) "

DATA segment size
(initialzed global and static vanables) fxed

TEXT S;V'"‘"") fixed size

A stack Is a region of memory that i1s dynamically allocated to the
program in a last-in, first-out (LIFO) pattern.

A stack pointer (typically a register) contains the memory address of the
top of the stack.

When an item is pushed onto the stack, the stack pointer is decreased and
the item is stored at the new location referenced by the stack pointer.

When an item is popped off the stack, the item referenced by the stack

pointer is (typically) copied into a register and the stack pointer is
Increased.

It stores types of variables that have a fixed lifetime - local variables The
stack Is relatively small. It is generally not a good idea to do anything that
eats up lots of stack space.

Lower addresses 4

Variable C
Variable B
Variable A
Retumn address > Stack frame of function
Parameter p1

Parameter p2 |, Corresponding C code:
Parameter p3 int function(int pl, int p2, int p3)

{
Some other value int A, B, C;

®
®)
L

Value

Value
Higher addresses Bottom of stack

The heap segment keeps track of memory used for dynamic memory
allocation.

The heap starts from lower memory, growing up into higher memory. In C,
when you use the new operator to allocate memory, this memory is allocated
In the heap segment.

Allocated memory stays allocated until it is specifically deallocated or the
application ends (at which point the OS should clean it up).

Because the heap iIs a big pool of memory, large arrays, structures, or classes
can be allocated here

int «ptr = new int; // ptr is assigned 4 bytes in the heap
int *array = new int[10]; // array is assigned 40 bytes in
the heap

Memory Leak

A garbage collector is a task that runs either periodically or when memory
gets tight.

It automatically frees any portions of memory that are no longer referenced.

With or without garbage collection, it is possible for a program to
Inadvertently accumulate memory that is never freed.

This is known as a memory leak.
The program will eventually fail when physical memory is exhausted

Registers

= Provide temporary storage for:
* Data & operands
* Memory addresses
= Control words

= Fastest form of storage
= Smallest Capacity
=Volatile Contents
* Contents lost when CPU is de-energized

= Register Types
* General Purpose
= Special Purpose

General Purpose Registers

= Are not tied to specific functions
= Are available for programmer’s general usage

= Can hold data, variables, or addresses

= Usage depend on addressing mode and programmer’s
designation

= Number of registers depend on CPU architecture

= Accumulator architectures have only a few
= Some as little as two GP registers

= RISC CPUs use a register file with dozens of registers

-

Special Purpose Registers

= |Instruction Register (IR)
Holds the instruction being currently decoded and executed

= Program Counter (PC)

= Holds the address of the next instruction to be fetched from
memory

m Stack Pointer (SP)
= Holds the address of the current top-of-stack (TOS)

= Status Register (SR)
= Holds the current CPU status
= Status is indicated by a set of flags
= A Flag: an individual bit indicating some condition

p

Memory Interface

Processor - Memory Interface

Memory must be random access —
memory - individual memory locations

can be accessed in any order at the

same high speed.

Instructions and data
The memory that connects to the

processor should operate preferably at a
speed that matches the processor, so as
not to slow the system down.

Processor

Large dynamic semiconductor RAM used for main memory cannot
operate at that speed (much slower).

Relatively small static semiconductor memory can be designed to
operate faster.

Cache Memory

A high speed memory called a cache memory placed between the
processor and main memory, operating a speed closer to that of the

processor.

Main memory

==

Data transfer
. Information
High speed _
cache memory X must be in
cache memory

Data transfer for processor to
] access it:
|

Processor

Cache Memory Organizations

Need a way to select the location within the cache.
The memory address of its location in main memory is used.

Three ways of selecting cache location:

1. Fully associative Memory _

2. Direct mapped

Cache

3. Set associative !
Data Memory address

Processor

y—

