
Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

 كلية العلوم

 ةـــيــــــذكـــة الـيـبـطــــة الــــمــــظـــم الانــــــــــســق
Intelligent Medical Systems Department

Subject: Data Structure

Class: Second

Lecturer: Prof.Dr. Mehdi Ebady Manaa

Lecture: (10)

Trees

2 | P a g e

Intelligent Medical Systems Department
Data Structures – Lecture (10)
Second Stage

Lecturer Name

Asst.Prof.Dr. Mehdi Ebady Manna

What Is a Tree?

A tree consists of nodes connected by edges. Figure 1 shows a tree. In such a picture of a

tree the nodes are represented as circles, and the edges as lines connecting the circles.

Figure 1: A general (non-binary) tree.

Why might you want to use a tree?

Usually, because it combines the advantages of two other structures:

 An ordered array and

 A linked list.

You can search a tree quickly, as you can an ordered array, and you can also insert and

delete items quickly, as you can with a linked list.

In computer programs, nodes often represent such entities as people, car parts, airline

reservations, and so on.

Edges are likely to be represented in a program by references, if the program is written

in Java.

3 | P a g e

Intelligent Medical Systems Department
Data Structures – Lecture (10)
Second Stage

Lecturer Name

Asst.Prof.Dr. Mehdi Ebady Manna

Typically, there is one node in the top row of a tree, with lines connecting to more

nodes on the second row, even more on the third, and so on. Thus, trees are small on

the top and large on the bottom.

This may seem upside-down compared with real trees, but generally a program starts an

operation at the small end of the tree, and it’s (arguably) more natural to think about

going from top to bottom, as in reading text. There are different kinds of trees.

Tree Terminology

Many terms are used to describe particular aspects of trees. Fortunately, most of these

terms are related to real-world trees or to family relationships (as in parents and children),

so they’re not hard to remember. Figure 2 shows many of these terms applied to a binary

tree.

Path: Think of someone walking from node to node along the edges that connect them.

The resulting sequence of nodes is called a path.

Figure 2: Tree terms. (H, E, I, J, and G are leaf nodes)

4 | P a g e

Intelligent Medical Systems Department
Data Structures – Lecture (10)
Second Stage

Lecturer Name

Asst.Prof.Dr. Mehdi Ebady Manna

Root: The node at the top of the tree is called the root. There is only one root in a tree.

For a collection of nodes and edges to be defined as a tree, there must be one (and only

one!) path from the root to any other node. Figure 3 shows a non-tree. You can see

that it violates this rule.

Figure 3: A non-trees.

Parent: Any node (except the root) has exactly one edge running upward to another

node. The node above it is called the parent of the node.

Child: Any node may have one or more lines running downward to other nodes. These

nodes below a given node are called its children.

Leaf: A node that has no children is called a leaf node or simply a leaf. There can be only

one root in a tree, but there can be many leaves.

Subtree: Any node may be considered to be the root of a subtree, which consists of its

children, and its children’s children, and so on. If you think in terms of families, a node’s

subtree contains all its descendants.

5 | P a g e

Intelligent Medical Systems Department
Data Structures – Lecture (10)
Second Stage

Lecturer Name

Asst.Prof.Dr. Mehdi Ebady Manna

Visiting: A node is visited when program control arrives at the node, usually for the

purpose of carrying out some operation on the node, such as checking the value of one of

its data fields or displaying it. Merely passing over a node on the path from one node to

another is not considered to be visiting the node.

Traversing: To traverse a tree means to visit all the nodes in some specified order. For

example, you might visit all the nodes in order of ascending key value.

Levels: The level of a particular node refers to how many generations the node is from

the root. If we assume the root is Level 0, and then its children will be Level 1, its

grandchildren will be Level 2, and so on.

Keys: We’ve seen that one data field in an object is usually designated a key value. This

value is used to search for the item or perform other operations on it. In tree diagrams,

when a circle represents a node holding a data item, the key value of the item is typically

shown in the circle.

Binary Trees: If every node in a tree can have at most two children, the tree is called

a binary tree. The two children of each node in a binary tree are called the left child and

the right child, corresponding to their positions when you draw a picture of a tree, as

shown in Figure 2. A node in a binary tree doesn’t necessarily have the maximum of two

children; it may have only a left child, or only a right child or it can have no children at

all (in which case it’s a leaf). The kind of binary tree we’ll be dealing with in this

discussion is technically called a binary search tree.

6 | P a g e

Intelligent Medical Systems Department
Data Structures – Lecture (10)
Second Stage

Lecturer Name

Asst.Prof.Dr. Mehdi Ebady Manna

Figure 4: A binary search trees.

NOTE: The defining characteristic of a binary search tree is this: A node’s left child

must have a key less than its parent, and a node’s right child must have a key

greater than or equal to its parent.

Representing the Tree in Java Code

Let’s see how we might implement a binary tree in Java. As with other data structures,

there are several approaches to representing a tree in the computer’s memory.

The most common is to store the nodes at unrelated locations in memory, and connect

them using references in each node that point to its children. You can also represent a

tree in memory as an array, with nodes in specific positions stored in corresponding

positions in the array. For our sample Java code we’ll use the approach of connecting the

nodes using references.

The Node Class: First, we need a class of node objects. These objects contain the data

representing the objects being stored (employees in an employee database, for example)

and also references to each of the node’s two children. Here’s how that looks:

class Node

 {

7 | P a g e

Intelligent Medical Systems Department
Data Structures – Lecture (10)
Second Stage

Lecturer Name

Asst.Prof.Dr. Mehdi Ebady Manna

 int iData; // data used as key value

 float fData; // other data

 node leftChild; // this node's left child

 node rightChild; // this node's right child

 public void displayNode()

 {

 } }

Some programmers also include a reference to the node’s parent. This simplifies some

operations but complicates others, so we don’t include it. We do include a method called

displayNode()to display the node’s data, but its code isn’t relevant here.

There are other approaches to designing class Node. Instead of placing the data items

directly into the node, you could use a reference to an object representing the data item:

class Node

 {

 person p1; // reference to person object

 node leftChild; // this node's left child

 node rightChild; // this node's right child

 }

class person

 {

 int iData;

 float fData;

 }

8 | P a g e

Intelligent Medical Systems Department
Data Structures – Lecture (10)
Second Stage

Lecturer Name

Asst.Prof.Dr. Mehdi Ebady Manna

This approach makes it conceptually clearer that the node and the data item it holds aren’t

the same thing. But it results in somewhat more complicated code, so we’ll stick to the

first approach.

The Tree Class: We’ll also need a class from which to instantiate the tree itself: the

object that holds all the nodes. We’ll call this class Tree. It has only one field: a Node

variable that holds the root. It doesn’t need fields for the other nodes because they are all

accessed from the root.The ―Tree class has a number of methods”. They are used for

finding, inserting, and deleting nodes; for different kinds of traverses; and for displaying

the tree. Here’s a skeleton version:

class Tree

 {

 private Node root; // the only data field in Tree

 public void find(int key) {

 }

 public void insert(int id, double dd) {

 }

 public void delete(int id) {

 }

 // various other methods

 } // end class Tree

Tree: Levels, Depth and Height

 The depth of node n is the length of the path from the root to the node. The set of all

nodes at a given depth is sometimes called a level of the tree. The root node is at depth

zero.

9 | P a g e

Intelligent Medical Systems Department
Data Structures – Lecture (10)
Second Stage

Lecturer Name

Asst.Prof.Dr. Mehdi Ebady Manna

• The size of a binary tree is the number of nodes in it

– This tree has size 12

• The depth of a node is its distance from the root

– a is at depth zero

– e is at depth 2

• The depth of a binary tree is the depth of its deepest node

– This tree has depth 4

 The height of a tree is the length of the path from the root to the deepest node in the

tree. A (rooted) tree with only one node (the root) has a height of zero, i.e., number of

nodes which must be traversed from the root to reach a leaf of a tree

 The degree of a node is the number of subtrees of the node

 The node with degree 0 is a leaf or terminal node.

 A node that has subtrees is the parent of the roots of the subtrees.

 The roots of these subtrees are the children of the node.

 Children of the same parent are siblings.

 The ancestors of a node are all the nodes along the path from the root to the node.

No. of Nodes on Binary Tree is 2
L
, where the L is the level

Binary Tree Traversals

 only 3 traversals remain

 inorder, postorder, preorder

Types of Binary Trees

 Degenerate – only one child

 Complete – always two children

a
b c

d e f

g h i j k
l

01 | P a g e

Intelligent Medical Systems Department
Data Structures – Lecture (10)
Second Stage

Lecturer Name

Asst.Prof.Dr. Mehdi Ebady Manna

 Balanced – ―mostly‖ two children

 more formal definitions exist, above are intuitive ideas

Binary Search Properties

The simplest form of tree is a binary tree. A binary tree consists of

 a node (called the root node) and

 left and right sub-trees. Both the sub-trees are themselves binary trees.

You now have a recursively defined data structure. (It is also possible to define a list

recursively):

Binary tree

Degenerate binary

tree (similar to

linked list)

Balanced binary

tree(useful for

search)

Complete binary

tree

00 | P a g e

Intelligent Medical Systems Department
Data Structures – Lecture (10)
Second Stage

Lecturer Name

Asst.Prof.Dr. Mehdi Ebady Manna

Complete Trees

Before we look at more general cases, let's make the optimistic assumption that we've

managed to fill our tree neatly, i.e., that each leaf is the same 'distance' from the root.

Complete tree

This forms a complete tree, whose height

is defined as the number of links from

the root to the deepest leaf.

Binary Search Tree processes:

1-Binary Search Tree – Insertion

 Algorithm

1. Perform search for value X

2. Search will end at node Y (if X not in tree)

3. If X < Y, insert new leaf X as new left subtree for Y

4. If X > Y, insert new leaf X as new right subtree for Y

 Observations

1. Insertions may unbalance tree

Example Insertion

 Insert (20)

10 < 20, right

30 > 20, left

25 > 20, left

Insert 20 on left

5

10

30

2 25 45

20

02 | P a g e

Intelligent Medical Systems Department
Data Structures – Lecture (10)
Second Stage

Lecturer Name

Asst.Prof.Dr. Mehdi Ebady Manna

2-Binary Search Tree – Deletion

 Algorithm

1. Perform search for value X

2. If X is a leaf, delete X

3. Else // must delete internal node

 a) Replace with largest value Y on left subtree

 OR smallest value Z on right subtree

 b) Delete replacement value (Y or Z) from subtree

 Observation

 Deletions may unbalance tree

Example Deletion (Leaf)

Delete (25)

10 < 25, right

30 > 25, left

25 = 25, delete
5

10

30

2 25 45

5

10

30

2 45

03 | P a g e

Intelligent Medical Systems Department
Data Structures – Lecture (10)
Second Stage

Lecturer Name

Asst.Prof.Dr. Mehdi Ebady Manna

Example Deletion (Internal Node)

 Delete (10)

Example Deletion (Internal Node)

 Delete (10)

5

10

30

2 25 45

5

5

30

2 25 45

2

5

30

2 25 45

Replacing 10 with

largest value in left

subtree

Replacing 5 with

largest value in left

subtree

Deleting leaf

5

10

30

2 25 45

5

25

30

2 25 45

5

25

30

2 45

Replacing 10 with

smallest value in right

subtree

Deleting leaf Resulting tree

04 | P a g e

Intelligent Medical Systems Department
Data Structures – Lecture (10)
Second Stage

Lecturer Name

Asst.Prof.Dr. Mehdi Ebady Manna

3- Finding a Node: Finding a node with a specific key is the simplest of the major tree

operations.

Figure 5: Finding node 57.

In Figure 5 the arrow starts at the root.

 The program compares the key value 57 with the value at the root, which is 63 and ,

 The key is less, so the program knows the desired node must be on the left side of the

tree—either the root’s left child or one of this child’s descendants.

 The left child of the root has the value 27, so the comparison of 57 and 27 will show

that the desired node is in the right subtree of 27.

 The arrow will go to 51, the root of this subtree. Here, 57 is again greater than the 51

node, so we go to the right, to 58, and then to the left, to 57.

 This time the comparison shows 57 equals the node’s key value, so we’ve found the

node we want.

 Balanced Search Trees

 Kinds of balanced binary search trees

 height balanced vs. weight balanced

 ―Tree rotations‖ used to maintain balance on insert/delete

05 | P a g e

Intelligent Medical Systems Department
Data Structures – Lecture (10)
Second Stage

Lecturer Name

Asst.Prof.Dr. Mehdi Ebady Manna

 Non-binary search trees

 2/3 trees: each internal node has 2 or 3 children, all leaves at same depth

(height balanced)

 B-trees :Generalization of 2/3 trees, Each internal node has between k/2 and k

children

 Each node has an array of pointers to children, Widely used in

databases

Other (Non-Search) Trees

 Parse trees

 Convert from textual representation to tree representation

 Textual program to tree: Used extensively in compilers

 Tree representation of data

o E.g. HTML data can be represented as a tree, called DOM (Document

Object Model) tree

o XML: Like HTML, but used to represent data, Tree structured

Parse Trees: Expressions, programs, etc. can be represented by tree structures, E.g.

Arithmetic Expression Tree, A-(C/5 * 2) + (D*5 % 4)

Tree Traversal: Goal: visit every node of a tree

 in-order traversal, the output: A – (C / 5 * 2) + (D * 5 % 4)

