
Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

 كلية العلوم

 ةـــيــــــذكـــة الـيـبـطــــة الــــمــــظـــم الانــــــــــســق

Subject: Data Structure

Class: Second

Lecturer: Prof.Dr. Mehdi Ebady Manaa

Lecture: (6)

Priority Queue

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

| P a g e 2

PRIORITY QUEUE CONCEPT

 A priority queue is best understood in comparison with a stack and a queue. To see this, imagine

a supermarket checkout, where customers, each with a certain number of items in the shopping

cart, arrive at the checkout counter:

 ItemsInCart Customer

 6 Mary //last to arrive

 12 Joe

 4 Jill

 9 Pete

 15 Stacy

 7 Bev //first to arrive

 CHECKOUT COUNTER

Suppose also that the entries <6, Mary>, <12, Joe> … <7, Bev> are placed in a data container,

to reflect order of arrival, with <7, Bev> first in, <15, Stacy> next in, and so on, and <6, Mary>

in last.

If the cashier serves the customers in order of arrival, that is, <7, Bev> first and <6, Mary>last,

we have a conventional queue, i.e. First In, First Out, or FIFO.

If the cashier serves the customers starting with entries <6, Mary>, and ending with <7, Bev>,

we have a stack, i.e. Last In, First Out, or LIFO.

If the cashier serves the customers with entries in the order <4, Jill>, <6, Mary>, <7, Bev>, …

ending with <15, Stacy>, that is, service in order of lowest number of shopping items, we have

a priority queue, i.e. The entry inserted with the lowest priority key, no matter when inserted,

is the first entry out.

In this example, the first data item of each entry, the number of shopping items, serves as the

priority key.

Notice the technical term entry. A priority queue consists of a set of entries into the queue, each

entry consisting of a priority key and a value.

Applications

 Scheduling jobs on a workstation holds jobs to be performed and their priorities. When a

job is finished or interrupted, highest-priority job is chosen using Extract-Max. New jobs

can be added using Insert function.

 Operating System Design – resource allocation

 Data Compression -Huffman algorithm

 Discrete Event simulation

 (1) Insertion of time-tagged events (time represents a priority of an event -- low time means

high priority)

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

| P a g e 3

 (2) Removal of the event with the smallest time tag

Implementation

 Linked Lists

 Using a binary Heap – a special binary tree with heap property

We show Front and Rear arrows to provide a comparison with an ordinary queue, but they’re

not really necessary. The algorithms know that the front of the queue is always at the top of the

array at nItems-1, and they insert items in order, not at the rear. Figure below shows the

operation of the PriorityQ class methods.

Two items removed from front of priority queue

Key Comparison Method

 Normally the entry with the highest priority has the lowest priority key value, and is extracted

from the priority queue first.

 That means that we need a way to compare the key values, so that we can say if the key of one

entry is greater or less than the key of another entry, and which key has the lowest value and

which the highest value.

The key comparison method may be very simple, based on integer values, as in the case of

number of shopping items above.

The Priority Queue ADT

A priority queue ADT will be implemented as a container of some kind that can support the

methods below.

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

| P a g e 4

 constructor

Create a new, empty queue.

insert

Add a new item to the queue.
remove

Remove and return an item from the queue. The item that is returned is the one with the

highest priority.
empty

Check whether the queue is empty.

Sorting With a Priority Queue

We can look at a priority queue as a black box. You can put entries into it, using insert(), in any

key order, take out a few entries, using removeMin(), put in some more and so on, as if using a

stack. But no matter how many we put in and take out, removeMin() always delivers the entry in

the queue with the lowest key value. This is obviously useful for sorting.

Suppose we want to sort a set of entries (each made up of a key and a value) in ascending order:

Step 1. Use insert() to insert, in any order, all the entries into the priority queue.

 Step 2. Use removeMin() to extract the entries from the queue, and print them, or place them in

an array. The entries are now sorted.

Class PriorityQueue

The insert() method checks whether there are any items; if not, it inserts one at index 0.

Otherwise, it starts at the top of the array and shifts existing items upward until it finds the place

where the new item should go. Then it inserts the item and increments nItems. Note that if

there’s any chance the priority queue is full, you should check for this possibility with isFull()

before using insert().

The front and rear fields aren’t necessary as they were in the Queue class because, as we noted,

front is always at nItems-1 and rear is always at 0.

The remove() method is simplicity itself: It decrements nItems and returns the item from the

top

of the array. The isEmpty() and isFull() methods check if nItems is 0 or maxSize, respectively

class PriorityQueue:
 def __init__(self):
 self.queArray][=

 self.nItems = 0

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

| P a g e 5

 def insert(self, item):
 if self.nItems == 0:
 self.queArray.append(item)

 else:
 j = self.nItems - 1

 while j >= 0:
 if item > self.queArray[j]:
 self.queArray[j + 1] = self.queArray[j]

 else:
 break

 j -= 1

 self.queArray[j + 1] = item

 self.nItems += 1

 def remove(self):
 if self.nItems > 0:
 self.nItems -= 1

 return self.queArray.pop(self.nItems)

 else:
 raise IndexError("Priority queue is empty")

 #Example usage of PriorityQueue

pq = PriorityQueue)(
pq.insert (3)

pq.insert (1)

pq.insert (4)

pq.insert (2)

print("Removed items in priority order:")

while pq.nItems > 0:
 print(pq.remove())

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

| P a g e 6

Q1. What is the primary characteristic that distinguishes a priority queue from a regular queue or stack?

 a) It uses a stack-like Last In, First Out (LIFO) approach.

 b) It follows a First In, First Out (FIFO) approach.

 c) Items are served based on a priority key, not their arrival order.

 d) It can only store items of equal priority.

 Answer: c) Items are served based on a priority key, not their arrival order.

Q2. In a priority queue, what serves as the priority key for each entry in the queue, as described in the

example?

 a) Customer names

 b) Number of shopping items

 c) Order of arrival

 d) Checkout counter number

Answer: b) Number of shopping items

Q3. Which of the following applications is NOT a suitable use case for a priority queue?

 a) Scheduling jobs based on their priority.

 b) Sorting a list of elements in ascending order.

 c) Managing resource allocation in an operating system.

 d) Simulating events with equal priority.

 Answer: b) Sorting a list of elements in ascending order.

Q4. What is the purpose of the `insert` operation in a priority queue?

 a) To add a new item to the end of the queue.

 b) To remove an item from the queue.

 c) To serve the item with the highest priority.

 d) To remove the last item that arrived.

 Answer: a) To add a new item to the end of the queue.**

Q5. Which data structure can be used to efficiently implement a priority queue with operations like `insert`

and `remove`?

 a) Array

 b) Linked List

 c) Binary Heap

 d) Queue

 Answer: c) Binary Heap

