Lecture-1Introduction & History development of microbiology Pof. Dr. Nada Khazal K. Hindi # Microbiology: Microbiology: is the study of microorganism, a large and divers group of microscopic organisms that exist a single cell or cell cluster, it also includes viruses which are microscopic but not cellular. These microscopic forms of life are present in vast numbers in nearly every environment known. They are found in the water, food, soil, and air. Also more than 90% of the cells in human's bodies are microbes. Some of these microorganisms (M.O.) are harmful (disease causing microorganisms), others benefit by association with biological activity of the host. # **Microbial Divisions** The field of microbiology includes the study of bacteria, fungi, protozoa and viruses. - 1. **Bacteriology:** is the science dealing with the study of bacteria. - 2. Mycology: is the science dealing with the study of fungi. - 3. **Protozology**: is the science dealing with the study of protozoa. - 4. **Virology**: is the science dealing with the study of viruses. - 5. Immunology: is the study of host's defense mechanisms against disease, also study the interaction between human and disease agents (pathogenic microbes). - The size M.Os. were variable; viruses are smallest MO, bacteria (prokaryots), fungi, protozoa and worms (euokaryotes). In genera prokaryotic cells are smaller than eukaryotic cells. # History development of microbiology - Microbiology has its origin deeply rooted in curiously. At first MOs were thought to be of little practical importance, - Leeuwenhoek (1673) designed and constructed simple microscope, he made the first accurate descriptions of most major types of single cell MO known today: algae, bacteria, protozoa, and yeasts. - Edward Jenner (1796) discovered the vaccine against cowpox (Vaccinia). - Louis Pasteur (1850) demonstrated the biological functions of MO (fermentation theory) method of sterilization (pasteurization) and development of vaccines against microbial diseases such as anthrax and rabies. **Joseph Lister** showed the role of MO in the wound contamination, and developed Lister system which came to be known as Antiseptic Surgery, which includes the heat sterilization of instruments and the application of phenol to wound by means of dressings. # Koch postulates in 1876. - 1. The suspected causative agent must be found in every case of disease. - 2. This MO must be isolated from the infected individual and grown in a culture with no other types of MO. - 3. When inoculation into normal healthy susceptible animal a pure culture of the agent must be produce the specific disease. - 4. The same MO must be isolated from the experimentally infected host. The modern era of control treatment in 1900 began with the use of chemicals that would kill or interfere with the growth of the disease agent without damaging the infected individual. This approach, known as chemotherapy was introduced by **Paul Ehrlich**. In 1929, Alexander Fleming isolated a mold produced substance that inhibited bacteria but was non toxic to lab animal. He named this antibacterial material Penicillin, which is one type of antibiotics. Up to data, many new approaches and techniques are developing that aid in the isolation, treatment, controlling, and prevention of infectious disease. ## **Eukaryotes & Prokaryotes** The main differences between Eukaryotic cells & Prokaryotic cells can be illustrates in the following table: Table (1) illustrates the main differences between Eukaryotic cells & Prokaryotic cells | Structure | Eukaryotic cells | Prokaryotic cells | | |--|---|---|--| | Definite Nucleus | Yes | No | | | Nuclear membrane | Yes | No | | | Chromosome | Multiple | Single | | | Cell envelope | Yeas, have flexible cell mem. Except fungi have rigid cell wall with chitin | Yeas, have rigid cell wall that contain peptidoglycan | | | Nucleolus | Yes | No | | | Organelles (mitocondria,
Golgi apparatus, | Yes | No | | | ribosome | Large 80 S ribosome | Small 70 S ribosome | | | Replication | By mitosis | By binary fission | | | Representative organisms | Animals, plant, protozoa, fungi | Bacteria | | # Scientific name: The binomial system of published by C. Linnaeus. The genus and species are significant taxonomic uses in binomial nomenclature for each organism. First name for genus and second name for species. First letter of genus should be written in capital letter, whereas first letter of species, must be write in small. Name of genus and species for any organism must be write in Italic from or place line under each genus and species. Ex: Staphylococcus aureus. ### Name of bacteria are derived from - 1. The name of disease that caused by bacteria. Ex: *Vibrio cholerae* = causes cholerae. - 2. The locality where the bacteria was first isolated. Ex: *Escherichia coli* = from colon. - 3. The scientists responsible for isolating bacteria. *Listeria* = Lister. - 4. Properties of bacterial morphology and physiology. *Staphylococcus aureus* = cluster. All types of organisms classified in to five kingdom; monera, protista, fungi, plantae, and animalia. The following table illustrates the kingdom. Table (2) illustrates the kingdom of All types of organisms | Kingdom | Types of cell | Organism | | | |----------|---------------|--------------|--|--| | monera | Prokaryotes | Bacteria | | | | protista | Eukaryotes | Protozoa | | | | fungi | Eukaryotes | fungi | | | | plantae | Eukaryotes | plant | | | | animalia | Eukaryotes | Man, animals | | | There are many differences among medical the important organisms; viruses (smallest MO), bacteria, fungi or mycosis, protozoa, and helminthes (Largest organism), therefore, the following table can be illustrates the comparison of medical important organisms. Table (3) illustrates the comparison of medical important organism | characteristic | Viruses | Bacteria | Fungi | Protozoa | Helminthes | |-----------------------------------|---|--|-----------------------------------|-----------------------|-----------------------------------| | Cells | No cell (particle) | Yes | Yes | Yes | Yes | | Diameter(μm) 0.02-0.3 smallest MO | | 1-0.5 | 3-10 (yeast) | 15-25
trophozoite | multicellular Largest
organism | | Nucleic acid | Either DNA or RNA | Both | Both | Both | Both | | Nature of outer surface proteins | Capsid and lipoprotein envelope | rigid cell wall that
contain
peptidoglycan | rigid cell
wall with
chitin | Flexible cell
mem. | May be cuticle | | ribosome | absent | 70 S | 80 S | 80 S | 80 S | | Methods of
Replication | Produce many copies of Nucleic acid and protein, then, reassemble into multiple progeny viruses. They are replicate only within living cell | By binary fission | Budding or
mitosis | mitosis | mitosis | | Motility | none | some | none | most | motile | # Shapes and size of bacteria and patterns of arrangement ## 1.Spherical (cocci); A: singular cocci. B: diplococci (pairs of cells). C: streptococci (chains). D:staphylococci (clusters or grape like). E: tetrad: four cocci ## 2. Bacilli (rod like); A: singular bacillus. B: diplobacilli (pairs of cells). C: streptobacilli (chains). D:coccobacilli (spherical to rod) ## 3.Spirochetes: spirilium (spiral). F vibrio (comma). **4.pleomorphic** (appear in many shape). #### Bacterial size Most disease causing by bacteria range in size from 0.2 -5 μ m in diameter and 0.4-14 μ m in length approximately. The bacterial cells are about the size of mitochonderia. ## **Bacterial Shapes and Arrangement** #### **Arrangements of Cocci** Streptococci #### **Arrangements of Bacilli** #### **Arrangements of Spiral** Spirilla (Helical-shaped/Corkscrew form) Vibrio **Spirochetes** The Biology Notes Created with RENDER (Biorender Templates) Coccus Encapsulated diplococci (Pneumococcus) Streptococci Staphylococci Sarcina Tetrad #### Bacilli Coccobacillus Bacillus Diplobacilli Streptobacilli **Palisades** #### **Others** Enlarged rod Vibrio (Fusobacterium) Comma form Club rod (Bdellovibrio) (Corynebacteriaceae) Corkscrew form Helical form (Borrelia burgdorferi) (Helicobacter pylori) Spirochete Filamentous ## **Budding and appendaged bacteria**