
Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

 كلية العلوم
 ةـــيــــــذكـــة الـيـبـطــــة الــــمــــظـــم الانــــــــــســق

Intelligent Medical Systems Department

Subject: Data Structure
Class: Second

Lecturer: Prof.Dr. Mehdi Ebady Manaa

Lecture: (7)

Linked Lists

2 | P a g e

Intelligent Medical Systems Department

Data Structures – Lecture (7)

Second Stage

Lecturer Name

Asst.Prof. Mehdi Ebady Manna

Linked Lists
A linked list, in its simplest form, is a collection of nodes that together form a linear ordering.

Linked Lists are a very common way of storing arrays of data. The major benefit of linked lists is

that you do not specify a fixed size for your list. The more elements you add to the chain, the

bigger the chain gets.

There is more than one type of a linked list, we'll stick to singly linked lists (the simplest one).

If for example you want a doubly linked list instead, very few simple modifications will give

you what you're looking for. Many data structures (e.g. Stacks, Queues, Binary Trees) are often

implemented using the concept of linked lists. Some different types of linked lists are shown

below:

A few basic types of Linked Lists

Singly Linked List
Root node links one way through all the nodes. Last node links to null.

Circular Linked List

Circular linked lists have a reference to one node which is the tail node and all the nodes are

linked together in one direction forming a circle. The benefit of using circular lists is that

appending to the end can be done very guickly.

Doubly Linked List

Every node stores a reference to its previous node as well as its next. This is good if you need to

move back by a few nodes and don't want to run from the beginning of the list.

There's a diagram to help you realize the main disadvantage of arrays but not Linked Lists

Create an empty integer array.

3 | P a g e

Intelligent Medical Systems Department

Data Structures – Lecture (7)

Second Stage

Lecturer Name

Asst.Prof. Mehdi Ebady Manna

Fill it partially with some data.The array component

without a number indicates allocated but unused space.

This is space you could have used for something better.

Add another element. We now have a full array to which

we can not add any more elements. We can delete or

replace, but we can not add.

lf the array is full, you can not add more elements,

because arrays have a fixed size. Linked Lists do not.

Another drawback of arrays is that if you delete an element from the middle and want no holes

in your array (e.g. (1, 2, 4, null) instead of (1, 2, null, 4)), you will need to shift everything after

the deleted element down in O(n) time. If you're trying to add an element somewhere other than

the very end of an array, you will need to shift some elements towards the end by one (also O(n)

time) to make room for the new element, and if you're writing an application which needs to

perform well and needs to do these operations often, you should consider using Linked Lists

instead. This should help you understand Linked Lists:

This is an empty linked list look like. The * is an

empty node (each element in a linked list called a

node) which has its next-node reference set to the

first node in the list. Since we don’t have a first

node, its next –node is a null pointer

This is a Linked List with three nodess. Each node

points to the next node in the chain. As mentioned

above, * is an empty node with a reference to the

first node. [3] is the last node in the chain with next

==null

Here we have delete node [2], so node [1]

(previosly pointing to [2]) now points to [3]. If we

didn’t change the refernce, node [3] and any nodes

behind it would have no references from your

program and get lost. If this happens and you’re

using C or C++, you have a memory leak. If

you’re using Java, the nodes would get

automatically garbage collected. Either way, make

sure you update the refernces!

For whatever reasons, we’ve decided to add node

[2] back nodes [1] and [3]. The reference from [1]

is set to [2], and the refence from [2] is set to the

old reference of [1], which is [3]

Pointers

In Python, like in Java, there are no explicit pointer types. Python uses reference semantics,

which means that all variable assignments, method arguments, and elements in data

4 | P a g e

Intelligent Medical Systems Department

Data Structures – Lecture (7)

Second Stage

Lecturer Name

Asst.Prof. Mehdi Ebady Manna

structures (e.g., lists) are handled as references to objects. References and pointers are

conceptually similar, but in Python, you don't perform pointer arithmetic, and it's not explicitly

necessary because Python manages the memory for you.

In Python, you can easily create data structures like linked lists using reference semantics. For

example :

 class Link:

 def __init__(self, value, next_link):

 self.value = value

 self.next = next_link

if __name__ == "__main:"__

 head = None

 for i in range (1 ,11:)

 head = Link(i, head)

 p = head

 while p is not None:

 print(p.value)

 p = p.next

When working with linked data structures, like linked lists, you don't need to explicitly declare

references as you do in some languages like Java. You can simply create objects and link them

together by assigning references to one another. For example:

class Link:

def __init__(self, id, dd):

self.iData = id

self.dData = dd

self.next = None

In this Python class, self.next is a reference to the next Link object in the list. You can create

instances of this class and link them together by updating the self.next reference. This is how

you build linked data structures in Python.

Python uses references implicitly, and you work with objects and references directly, without the

need for explicit pointers as seen in some other languages.

The insertFirst() Method

The insertFirst() method of LinkList inserts a new link at the beginning of the list.

To insert the new link, we need only set the next field in the newly created link to point to the old

first link and then change first so it points to the newly created link. This situation is shown in

Figure below. The insertion it can be done in two steps:

1. Update the next link of a new node, to point to the current head node.

5 | P a g e

Intelligent Medical Systems Department

Data Structures – Lecture (7)

Second Stage

Lecturer Name

Asst.Prof. Mehdi Ebady Manna

2. Update head link to point to the new node.

Inserting a new link

def insert_first(self, id, dd):
 # Create a new Link

 new_link = Link(id, dd)

 # Link the newLink to the old first element

 new_link.next = self.first

 # Update the first reference to the newLink

 self.first = new_link

6 | P a g e

Intelligent Medical Systems Department

Data Structures – Lecture (7)

Second Stage

Lecturer Name

Asst.Prof. Mehdi Ebady Manna

Add last

It can be done in two steps:

1. Update the next link of the current tail node, to point to the new node.

2. Update tail link to point to the new node.

def add_last(self, new_node):

 if new_node is None:

 return

 else:

 new_node.next = None

 if self.head is None:

 self.head = new_node

 self.tail = new_node

 else:

 self.tail.next = new_node

7 | P a g e

Intelligent Medical Systems Department

Data Structures – Lecture (7)

Second Stage

Lecturer Name

Asst.Prof. Mehdi Ebady Manna

 self.tail = new_node

 } }

Inserted Between Two Nodes

Such an insert can be done in two steps:

1. Update link of the "previous" node, to point to the new node.

2. Update link of the new node, to point to the "next" node.

 def insert_after(self, previous, new_node):

 if new_node is None:

 return

 else:

 if previous is None:

 self.insert_first(new_node)

 elif previous == self.tail:

 self.add_last(new_node)

 else:

 new_node.next = previous.next

 previous.next = new_node

8 | P a g e

Intelligent Medical Systems Department

Data Structures – Lecture (7)

Second Stage

Lecturer Name

Asst.Prof. Mehdi Ebady Manna

Singly-linked list, Removal (deletion) operation.

There are four cases, which can occur while removing the node. These cases are similar to the

cases in add operation. We have the same four situations, but the order of algorithm actions is

opposite. Notice, that removal algorithm includes the disposal of the deleted node, which may be

unnecessary in languages with automatic garbage collection (i.e., Java).

List has only one node

When list has only one node, which is indicated by the condition, that the head points to the

same node as the tail, the removal is quite simple. Algorithm disposes the node, pointed by

head (or tail) and sets both head and tail to NULL.

Remove first

In this case, first node (current head node) is removed from the list.

It can be done in two steps:

1. Update head link to point to the node, next to the head.

2. Dispose removed node.

9 | P a g e

Intelligent Medical Systems Department

Data Structures – Lecture (7)

Second Stage

Lecturer Name

Asst.Prof. Mehdi Ebady Manna

def remove_first(self):

 if self.head is None:

 return

 else:

 if self.head == self.tail:

 self.head = None

 self.tail = None

 else:

 self.head = self.head.next

Remove last

In this case, last node (current tail node) is removed from the list. This operation is a bit more

tricky, than removing the first node, because algorithm should find a node, which is previous

to the tail first.

It can be done in three steps:

1. Update tail link to point to the node, before the tail. In order to find it, list should be

traversed first, beginning from the head.

2. Set next link of the new tail to NULL.

01 | P a g e

Intelligent Medical Systems Department

Data Structures – Lecture (7)

Second Stage

Lecturer Name

Asst.Prof. Mehdi Ebady Manna

3. Dispose removed node.

def remove_last(self):

 if self.tail is None:

 return

 else:

 if self.head == self.tail:

 self.head = None

 self.tail = None

 else:

 previous_to_tail = self.head

 while previous_to_tail.next != self.tail:

 previous_to_tail = previous_to_tail.next

 self.tail = previous_to_tail

 self.tail.next = None

Remove Next

Such a removal can be done in two steps:

1. Update next link of the previous node, to point to the next node, relative to the removed

node.

00 | P a g e

Intelligent Medical Systems Department

Data Structures – Lecture (7)

Second Stage

Lecturer Name

Asst.Prof. Mehdi Ebady Manna

2. Dispose removed node.

def remove_next(self, previous):

 if previous is None:

 self.remove_first)(

 elif previous.next == self.tail:

 self.tail = previous # Remove last

 self.tail.next = None

 elif previous == self.tail:

 return

 else:

 previous.next = previous.next.next

Traversal algorithm

Beginning from the head,

1. check, if the end of a list hasn't been reached yet;

2. do some actions with the current node, which is specific for particular algorithm;

3. current node becomes previous and next node becomes current. Go to the step 1.

Example

As for example, let us see an example of summing up values in a singly-linked list.

02 | P a g e

Intelligent Medical Systems Department

Data Structures – Lecture (7)

Second Stage

Lecturer Name

Asst.Prof. Mehdi Ebady Manna

For some algorithms tracking the previous node is essential, but for some, like an example, it's

unnecessary. We show a common case here and concrete algorithm can be adjusted to meet its

individual requirements.

class LinkedList:

 (... # other methods and class definitions)

 def traverse(self):

 sum = 0

 current = self.head

 previous = None

03 | P a g e

Intelligent Medical Systems Department

Data Structures – Lecture (7)

Second Stage

Lecturer Name

Asst.Prof. Mehdi Ebady Manna

 while current is not None:

 sum += current.value

 previous = current

 current = current.next

 return sum

H.W : Finding and Deleting Specified Links

This example program search a linked list for a data item with a specified key value and to delete

an item with a specified key value.

 A Stack Implemented by a Linked List

When we created a stack we used an ordinary Java array to hold the stack’s data. The stack’s

push() and pop() operations were actually carried out by array operations such as

arr[++top] = data;

and

data = arr[top--];

which insert data into, and take it out of, an array.

We can also use a linked list to hold a stack’s data. In this case the push() and pop() operations

would be carried out by operations like

theList.insertFirst(data)

and

data = theList.deleteFirst()

The user of the stack class calls push() and pop() to insert and delete items without knowing, or

needing to know, whether the stack is implemented as an array or as a linked list.

class Link:

 def __init__(self, dData):

 self.dData = dData

 self.next = None

class LinkList:

 def __init__(self):

 self.first = None

 def is_empty(self):

 return self.first is None

 def insert_first(self, dd):

 new_link = Link(dd)

 new_link.next = self.first

04 | P a g e

Intelligent Medical Systems Department

Data Structures – Lecture (7)

Second Stage

Lecturer Name

Asst.Prof. Mehdi Ebady Manna

 self.first = new_link

 def delete_first(self):

 if not self.is_empty():

 temp = self.first

 self.first = self.first.next

 return temp.dData

 else:

 return None

 def display_list(self):

 current = self.first

 while current is not None:

 print(current.dData, end=" ")

 current = current.next

 print()

class LinkStack:

 def __init__(self):

 self.the_list = LinkList()

 def push(self, j):

 self.the_list.insert_first(j)

 def pop(self):

 return self.the_list.delete_first()

 def is_empty(self):

 return self.the_list.is_empty()

 def display_stack(self):

 print("Stack (top-->bottom): ", end="")

 self.the_list.display_list()

class FirstLastList:

 def __init__(self):

 self.first = None

 self.last = None

 def is_empty(self):

 return self.first is None

 def insert_last(self, dd):

 new_link = Link(dd)

 if self.is_empty():

 self.first = new_link

 else:

 self.last.next = new_link

 self.last = new_link

 def delete_first(self):

 if not self.is_empty():

 temp = self.first

05 | P a g e

Intelligent Medical Systems Department

Data Structures – Lecture (7)

Second Stage

Lecturer Name

Asst.Prof. Mehdi Ebady Manna

 self.first = self.first.next

 if self.first is None:

 self.last = None

 return temp.dData

 else:

 return None

 def display_list(self):

 current = self.first

 while current is not None:

 print(current.dData, end=" ")

 current = current.next

 print()

class LinkQueue:

 def __init__(self):

 self.the_list = FirstLastList()

 def is_empty(self):

 return self.the_list.is_empty()

 def insert(self, j):

 self.the_list.insert_last(j)

 def remove(self):

 return self.the_list.delete_first()

 def display_queue(self):

 self.the_list.display_list()

Example usage of the classes and methods:

Creating a stack and using it

stack = LinkStack()

stack.push(1)

stack.push(2)

stack.push(3)

stack.display_stack()

stack.pop()

stack.display_stack()

Creating a queue and using it

queue = LinkQueue()

queue.insert(1)

queue.insert(2)

queue.insert(3)

queue.display_queue()

queue.remove()

queue.display_queue()

Output

Stack (top-->bottom): 3 2 1

Stack (top-->bottom): 2 1

1 2 3

06 | P a g e

Intelligent Medical Systems Department

Data Structures – Lecture (7)

Second Stage

Lecturer Name

Asst.Prof. Mehdi Ebady Manna

2 3

