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Basic discrete structures

 Discrete math =

— study of the discrete structures used to represent discrete
objects

* Many discrete structures are built using sets
— Sets = collection of objects

Examples of discrete structures built with the help of sets:
* Combinations

* Relations

* Graphs
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Set

« Definition: A set is a (unordered) collection of objects. These
objects are sometimes called elements or members of the set.
(Cantor's naive definition)

 Examples:
— Vowels in the English alphabet
V={ae 1,0,u}
— First seven prime numbers.
X=1{2,3,5"7,11,13,17}
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Representing sets

Representing a set by:
1) Listing (enumerating) the members of the set.
2) Definition by property, using the set builder notation
{x| x has property P}.
Example:
* Even integers between 50 and 63.
1) E = {50, 52, 54, 56, 58, 60, 62}
2) E = {x| 50 <=x <63, x is an even integer}

[f enumeration of the members is hard we often use ellipses.
Example: a set of integers between 1 and 100
« A={1,2,3 ..., 100}
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Important sets in discrete math

Natural numbers:
- N={0,1,2,3, ...}

Integers
- 4= 1{...,-2,-1,0,1,2, ...}

Positive integers
- Z7={1,2,3....}

Rational numbers
T Q:{p/q‘p EZ:qEZ:q¢0}

Real numbers
— R
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Equality

Definition: Two sets are equal if and only if they have the same
elements.

Example:

+ {1,2,3} = {3,1,2} = {1,2,1,3,2}

Note: Duplicates don't contribute anything new to a set, so remove
them. The order of the elements 1n a set doesn't contribute
anything new.

Example: Are {1,2,3,4} and {1,2,2,4} equal?
No!
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Special sets

Special sets:

— The universal set is denoted by U: the set of all objects
under the consideration.

— The empty set is denoted as & or { }.
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Venn diagrams

* A set can be visualized using Venn Diagrams:
- V={A,B,C}
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A Subset

* Definition: A set A is said to be a subset of B if and only if
every element of A 1s also an element of B. We use A € B to
indicate A is a subset of B.

* Alternate way to define A 1s a subset of B:
Vx (x € A) > (x € B)
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Empty set/Subset properties

Theorem @ < S
« Empty set is a subset of any set.

Proof:

e Recall the definition of a subset: all elements of a set A must be
also elements of B: Vx (x € A —> x € B).

* We must show the following implication holds for any S
Vx(xe d—>xef)

 Since the empty set does not contain any element, x € & 1is
always FKalse

« Then the implication is always True.
End of proof

CS 441 Discrete mathematics for CS M. Hauskrecht




Subset properties

Theorem: Sc S
* Any set S is a subset of itself

Proof:

* the definition of a subset says: all elements of a set A must be
also elements of B: Vx (x € A > x € B).

* Applying this to S we get:
* Vx(x € S—x € S) which s trivially True
* End of proof

Note on equivalence:
« Two sets are equal if each 1s a subset of the other set.
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A proper subset

Definition: A set A 1s said to be a proper subset of B if and only
if A< B and A # B. We denote that A is a proper subset of B
with the notation A — B.

U
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A proper subset

Definition: A set A 1s said to be a proper subset of B if and only
if A< B and A # B. We denote that A is a proper subset of B

with the notation A < B.

Example: A={1,2,3} B={1,2,3,4,5}
Is: AcB ? Yes.

CS 441 Discrete mathematics for CS

M. Hauskrecht




Cardinality

Definition: Let S be a set. If there are exactly n distinct elements
in S, where n 1s a nonnegative integer, we say S 1s a finite set
and that n 1s the cardinality of S. The cardinality of S is
denoted by | S |.

Examples:
« V={12345}
[ V=S5

- A={12,34,...,20}
IA] =20

.« | D=0
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Infinite set

Definition: A set 1s infinite if 1t 1s not finite.

Examples:

 The set of natural numbers 1s an infinite set.

« N=1{1,2,3,..}

 The set of reals 1s an infinite set.
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Power set

Definition: Given a set S, the power set of S is the set of all subsets
of S. The power set is denoted by P(S).

Examples:

« Assume an empty set

What is the power set of & ? P(D)={ D }
What is the cardinality of P(J) ? | P(Q) |=1.

Assume set {1}
P({1})={9, {1} }
[P({1})[=2
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Power set

* P({1})={9, {1} }
* [PGIHI=2

* Assume {1,2}

« P({1,2})=1{O, {1}, {2}, {12} }
* [P(11,25 )| =4

* Assume {1,2,3}

* P(11,2,3}) = {9, {1}, {2}, {3}, 11,2}, {13}, {2,3}, {1.2,3} }
* [P(11,2,3} | =38

« IfSis aset with |S|=n then | P(S) |=?
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N-tuple

* Sets are used to represent unordered collections.
* Ordered-n tuples are used to represent an ordered collection.

Definition: An ordered n-tuple (x1, x2, ..., XN) 1s the ordered
collection that has x1 as its first element, x2 as 1ts second
element, ..., and XN as i1ts N-th element, N > 2.

P
L

Example: y

B
-

X

* Coordinates of a point in the 2-D plane (12, 16)
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Cartesian product

Definition: Let S and T be sets. The Cartesian product of S and
T, denoted by S x T, 1s the set of all ordered pairs (s,t), where s
€ Sandt € T. Hence,

. SxT={(s,t)|seSAteT}.

Examples:

. S={1,2} and T = {a,b,c}

. SxT=1{(l,a),(1,b), (l,c),(2,a),(2,b), (2,c) }
. TxS=1{(al),(a2),(b]),(b2),(cl),(c2)}
* Note: SxT=TxS!!!!
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Cardinality of the Cartesian product
* [SXT|=[S[*T].

Example:

* A= {John, Peter, Mike}

B ={Jane, Ann, Laura}

* A x B= {(John, Jane),(John, Ann) , (John, Laura), (Peter, Jane),

(Peter, Ann) , (Peter, Laura) , (Mike, Jane) , (Mike, Ann) ,
(Mike, Laura)}

« |JAxB|=9
* |AFF3, B3 2> [A[[B[=9

Definition: A subset of the Cartesian product A x B is called a
relation from the set A to the set B.
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Set operations

Definition: Let A and B be sets. The union of A and B, denoted
by A U B, 1s the set that contains those elements that are either in
A or 1n B, or 1n both.

 Alternate: AuUB={x|xe Av xeB}.

U B

0 A
* Example:

e A={123,6} B=1{2469)
« AUB={1234,69}
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Set operations

Definition: Let A and B be sets. The intersection of A and B,
denoted by A n B, is the set that contains those elements that are
in both A and B.

 Alternate: AnB={x|xe AA xeB}.

U B

Example:
« A=1{1,2,3,6} B=1{2,4,6,9}
- AnB={2,6}
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Disjoint sets

Definition: Two sets are called disjoint if their intersection 1s
empty.
* Alternate: A and B are disjoint if and only if AnB = (.

U
B . A
O
Example:
« A={1,2,3,6} B={4,7,8} Are these disjoint?
* Yes.
e« AnB=Y
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Cardinality of the set union

Cardinality of the set union.
« |AUB|=]A|+|B|-|A nB|

U B

i

* Why this formula?
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Cardinality of the set union

Cardinality of the set union.
 |AUB|=|A|+|B|-|A nB]|

U B
E )

* Why this formula? Correct for an over-count.

* More general rule:

— The principle of inclusion and exclusion.
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Set difference

Definition: Let A and B be sets. The difference of A and B,
denoted by A - B, is the set containing those elements that are in
A but not in B. The difference of A and B 1s also called the
complement of B with respect to A.

 Alternate: A-B={x|xeA A x¢B}.

Example: A= {1,2,3,5,7} B={1,5,6,8}
« A-B={237}
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Think you

Any guestions ??
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