

Discrete Mathematics

Lecture 5

Sets and set operations

By

Asst. Lect. Ali Al-Khawaja

Basic discrete structures

- Discrete math =
 - study of the discrete structures used to represent discrete objects
- Many discrete structures are built using <u>sets</u>
 - Sets = collection of objects

Examples of discrete structures built with the help of sets:

- Combinations
- Relations
- Graphs

Set

<u>Definition</u>: A set is a (unordered) collection of objects. These objects are sometimes called <u>elements</u> or <u>members</u> of the set. (Cantor's naive definition)

Examples:

Vowels in the English alphabet

$$V = \{ a, e, i, o, u \}$$

First seven prime numbers.

$$X = \{ 2, 3, 5, 7, 11, 13, 17 \}$$

Representing sets

Representing a set by:

- 1) Listing (enumerating) the members of the set.
- 2) Definition by property, using the set builder notation {x | x has property P}.

Example:

Even integers between 50 and 63.

1)
$$E = \{50, 52, 54, 56, 58, 60, 62\}$$

2)
$$E = \{x | 50 \le x \le 63, x \text{ is an even integer} \}$$

If enumeration of the members is hard we often use ellipses.

Example: a set of integers between 1 and 100

•
$$A = \{1,2,3,...,100\}$$

Important sets in discrete math

Natural numbers:

$$- N = \{0,1,2,3,...\}$$

Integers

$$-$$
 Z = {..., -2,-1,0,1,2, ...}

Positive integers

$$-\mathbf{Z}^{+} = \{1,2,3....\}$$

Rational numbers

$$- \mathbf{Q} = \{ p/q \mid p \in Z, q \in Z, q \neq 0 \}$$

Real numbers

 $-\mathbf{R}$

Equality

Definition: Two sets are equal if and only if they have the same elements.

Example:

• $\{1,2,3\} = \{3,1,2\} = \{1,2,1,3,2\}$

Note: Duplicates don't contribute anything new to a set, so remove them. The order of the elements in a set doesn't contribute anything new.

Example: Are {1,2,3,4} and {1,2,2,4} equal?

No!

Special sets

Special sets:

- The <u>universal set</u> is denoted by U: the set of all objects under the consideration.
- The empty set is denoted as \emptyset or $\{\}$.

Venn diagrams

• A set can be visualized using Venn Diagrams:

$$- V={A,B,C}$$

A Subset

• <u>Definition</u>: A set A is said to be a subset of B if and only if every element of A is also an element of B. We use $A \subseteq B$ to indicate A is a subset of B.

Alternate way to define A is a subset of B:

$$\forall x (x \in A) \rightarrow (x \in B)$$

Empty set/Subset properties

Theorem $\emptyset \subseteq S$

· Empty set is a subset of any set.

Proof:

- Recall the definition of a subset: all elements of a set A must be also elements of B: ∀x (x ∈ A → x ∈ B).
- We must show the following implication holds for any S $\forall x (x \in \emptyset \rightarrow x \in S)$
- Since the empty set does not contain any element, x ∈ Ø is always False
- Then the implication is always True.

End of proof

Subset properties

Theorem: $S \subseteq S$

Any set S is a subset of itself

Proof:

- the definition of a subset says: all elements of a set A must be also elements of B: $\forall x (x \in A \rightarrow x \in B)$.
- Applying this to S we get:
- $\forall x (x \in S \rightarrow x \in S)$ which is trivially **True**
- End of proof

Note on equivalence:

Two sets are equal if each is a subset of the other set.

A proper subset

<u>Definition</u>: A set A is said to be a proper subset of B if and only if $A \subseteq B$ and $A \ne B$. We denote that A is a proper subset of B with the notation $A \subseteq B$.

A proper subset

<u>Definition</u>: A set A is said to be a proper subset of B if and only if $A \subseteq B$ and $A \neq B$. We denote that A is a proper subset of B with the notation $A \subseteq B$.

Example: $A = \{1,2,3\}$ $B = \{1,2,3,4,5\}$

Is: $A \subset B$? Yes.

Cardinality

Definition: Let S be a set. If there are exactly n distinct elements in S, where n is a nonnegative integer, we say S is a finite set and that n is the **cardinality of S**. The cardinality of S is denoted by | S |.

•
$$V = \{1 \ 2 \ 3 \ 4 \ 5\}$$

 $|V| = 5$

Infinite set

<u>Definition</u>: A set is **infinite** if it is not finite.

- The set of natural numbers is an infinite set.
- $N = \{1, 2, 3, ...\}$
- The set of reals is an infinite set.

Power set

Definition: Given a set S, the **power set** of S is the set of all subsets of S. The power set is denoted by **P(S)**.

- Assume an empty set ∅
- What is the power set of \emptyset ? $P(\emptyset) = {\emptyset}$
- What is the cardinality of $P(\emptyset)$? $|P(\emptyset)| = 1$.
- Assume set {1}
- $P(\{1\}) = \{\emptyset, \{1\}\}$
- $|P(\{1\})| = 2$

Power set

- $P(\{1\}) = \{\emptyset, \{1\}\}$
- $|P(\{1\})| = 2$
- Assume {1,2}
- $P(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}$
- $|P(\{1,2\})| = 4$
- Assume {1,2,3}
- $P(\{1,2,3\}) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$
- $|P(\{1,2,3\})| = 8$
- If S is a set with |S| = n then |P(S)| = ?

N-tuple

- Sets are used to represent unordered collections.
- Ordered-n tuples are used to represent an ordered collection.

<u>Definition</u>: An <u>ordered n-tuple</u> (x1, x2, ..., xN) is the ordered collection that has x1 as its first element, x2 as its second element, ..., and xN as its N-th element, $N \ge 2$.

Example:

• Coordinates of a point in the 2-D plane (12, 16)

Cartesian product

<u>Definition</u>: Let S and T be sets. The <u>Cartesian product of S and T</u>, denoted by $S \times T$, is the set of all ordered pairs (s,t), where s $\in S$ and $t \in T$. Hence,

• $S \times T = \{ (s,t) \mid s \in S \land t \in T \}.$

- $S = \{1,2\}$ and $T = \{a,b,c\}$
- S x T = { (1,a), (1,b), (1,c), (2,a), (2,b), (2,c) }
- T x S = { (a,1), (a, 2), (b,1), (b,2), (c,1), (c,2) }
- Note: S x T ≠ T x S !!!!

Cardinality of the Cartesian product

• $|S \times T| = |S| * |T|$.

Example:

- A= {John, Peter, Mike}
- B ={Jane, Ann, Laura}
- A x B= {(John, Jane),(John, Ann), (John, Laura), (Peter, Jane), (Peter, Ann), (Peter, Laura), (Mike, Jane), (Mike, Ann), (Mike, Laura)}
- $|A \times B| = 9$
- |A|=3, $|B|=3 \rightarrow |A| |B|=9$

Definition: A subset of the Cartesian product A x B is called a relation from the set A to the set B.

Set operations

<u>Definition</u>: Let A and B be sets. The <u>union of A and B</u>, denoted by $A \cup B$, is the set that contains those elements that are either in A or in B, or in both.

• Alternate: $A \cup B = \{ x \mid x \in A \lor x \in B \}.$

- Example:
- $A = \{1,2,3,6\}$ $B = \{2,4,6,9\}$
- $A \cup B = \{1,2,3,4,6,9\}$

Set operations

<u>Definition</u>: Let A and B be sets. The <u>intersection of A and B</u>, denoted by $A \cap B$, is the set that contains those elements that are in both A and B.

• Alternate: $A \cap B = \{ x \mid x \in A \land x \in B \}.$

•
$$A = \{1,2,3,6\}$$
 $B = \{2,4,6,9\}$

•
$$A \cap B = \{2, 6\}$$

Disjoint sets

<u>Definition</u>: Two sets are called **disjoint** if their intersection is empty.

• Alternate: A and B are disjoint if and only if $A \cap B = \emptyset$.

- $A=\{1,2,3,6\}$ $B=\{4,7,8\}$ Are these disjoint?
- Yes.
- $A \cap B = \emptyset$

Cardinality of the set union

Cardinality of the set union.

• $|A \cup B| = |A| + |B| - |A \cap B|$

• Why this formula?

Cardinality of the set union

Cardinality of the set union.

• $|A \cup B| = |A| + |B| - |A \cap B|$

- Why this formula? Correct for an over-count.
- More general rule:
 - The principle of inclusion and exclusion.

Set difference

<u>Definition</u>: Let A and B be sets. The <u>difference of A and B</u>, denoted by A - B, is the set containing those elements that are in A but not in B. The difference of A and B is also called the complement of B with respect to A.

• Alternate: $A - B = \{ x \mid x \in A \land x \notin B \}.$

Example: $A = \{1,2,3,5,7\}$ $B = \{1,5,6,8\}$

• A - B = $\{2,3,7\}$

Think you

Any questions ??