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Matrix Decomposition Methods in Image Processing 

In the linear algebra discipline in mathematical, a matrix decomposition or 

matrix factorization is a factorization of a matrix into a product of matrices. 

There are many different matrix decompositions; each finds use among a 

particular class of problems. 

 

 Some Types of Matrix Decomposition Methods 

 

a. Decompositions based on eigenvalues and related concepts 

a.1 Singular value decomposition 

a.2 Hessenberg decomposition 

a.3 Eigen decomposition 

a.4 Jordan decomposition 

a.5 Schur decomposition 

a.6 Real Schur decomposition 

a.7 QZ decomposition 

a.8 Takagi's factorization 

a.9 Scale-invariant decompositions 

 

b. Decompositions related to solving systems of linear equations 

b.1 QR decomposition 

b.2 LU decomposition 

b.3 Cholesky decomposition 

b.4 LU reduction 

b.5 Block LU decomposition 



b.6 Rank factorization 

b.7 RRQR factorization 

b.8 Interpolative decomposition 

c. Other decompositions 

c.1 Polar decomposition 

c.2 Algebraic polar decomposition 

c.3 Mostow's decomposition 

c.4 Sinkhorn normal form 

c.5 Sectoral decomposition 

c.6 Williamson's normal form 

 



 

 

Methods for matrix decomposition in linear algebra have found numerous 

applications in image processing. Therefore, it seems reasonable to investigate 

matrix decomposition applications in image processing. The following is a list 

of more applications of matrix decomposition methods: 

 Data Compression 

 CT Scan Reconstruction 

 Linear Regression (Least Square Systems) 

 Spectral Clustering 

 Moore-Penrose Pseudo Inverse 

 Signal Estimation Theory 

 Derivation of the Recursive Least-Squares Filter 

 Sensor Array Signal Processing 

In addition, in machine learning and statistics, we often have to deal with 

structural data, which is generally represented as a table of rows and columns, 

or a matrix. A lot of problems in machine learning can be solved using matrix 

algebra and vector calculus. Applications covered are background Removal, 

topic modeling, recommendations using collaborative filtering and eigenfaces. 

 

2. The Effect of the Matrix Decomposition Methods on Images: 

A multitude of matrix decomposition techniques stemming from linear algebra 

to have been applied to image processing. When the decomposition methods are 

performed on the whole image, the result will be as the following. 

 

a- The Effect of SVD Method on image 
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b- The Effect of Hessenberg Decomposition Method on image 
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c- The Effect of QR Decomposition Method on image 
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d- The Effect of LU Decomposition Method on image 
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3. The Singular Value Decomposition (SVD) and Image Processing 

Singular Value Decomposition (SVD) has recently emerged as a new paradigm 

for processing different types of images. SVD is an attractive algebraic transform 

for image processing applications. 

In linear algebra, the SVD is a factorization of a rectangular real or complex 

matrix analogous to the diagonalizations of symmetric or Hermitian square 

matrices using a basis of eigenvectors. SVD is a stable and effective method to 

split the system into a set of linearly independent components, each of them 

bearing own energy contribution. 

In digital image processing, image features are divided into four groups: visual 

features, statistical pixel features, transform coefficient features, and algebraic  
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features. The SVD technique can be considered as an algebraic feature. The 

algebraic, usually represent intrinsic properties. 

SVD method can transform matrix 𝐴 into product 𝑈S𝑉𝑇, which allows us to 

refactor a digital image in three matrices. The use of singular values of such 

refactoring allows us to represent the image with a smaller set of values, which 

can preserve useful features of the original image, but use less storage space in 

the memory, and achieve the image compression process. 

The objective of this section is to apply linear algebra “Singular Value 

Decomposition (SVD)“ to mid-level image processing, such as image 

compression and recognition. The method is factoring a matrix 𝐴 into three new 

matrices 𝑈,S, and 𝑉, in such a way that 𝐴=𝑈S𝑉𝑇. Where 𝑈 and 𝑉 are orthogonal 

matrices and S is a diagonal matrix. 

 

4.  Singular Value Decomposition Method Mathematically: 

Let 𝐴 be any 𝑚×𝑛 matrix. Then there are orthogonal matrices 𝑈, and a 

diagonal matrix S such that 

 

 

 

5. Computing the SVD by Hand: 

We now list a simplistic algorithm for computing the SVD of a matrix 𝐴. It can 

be used fairly easily for manual computation of small examples. For a given 

𝑚×𝑛 matrix 𝐴 the procedure is as follows: 
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Example: The SVD form of the matrix is: 
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2. Theorem: 
Any 𝑚×𝑛 real matrix 𝐴 can be factored uniquely into a product of the form 

𝑈S𝑉𝑇, called the SVD of 𝐴, where 𝑈 and 𝑉 are orthogonal matrices and S is an 

𝑚×𝑛 diagonal matrix whose diagonal entries called the singular values of 𝐴 are 

all real and satisfy the following: 

 

Let 𝜎𝑗 denote the 𝑗𝑡ℎ singular value along the diagonal of 𝑆 for 𝑗=1,...,. If 𝑢𝑗 and 
𝑣𝑗 represent the 𝑗𝑡ℎ column vectors of 𝑈 and 𝑉, respectively, then 𝐴 can be 
written as 

 

We can approximate 𝐴 by matrices of lower rank by truncating the expansion 

(1). Most of the information contained in 𝐴 will be reproduced using relatively 
few terms of the expansion (1). We expect a matrix of the form 
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to adequately represent the original image given by 𝐴 even if 𝑟 is much smaller 

than 𝑘 (where 𝑟 is the number of the largest singular values of 𝐴) because we 

 

approximation to 𝐴. Students can reconstruct the images using the SVD with 
 

 

The integer 𝑟 can be chosen confidently less then 𝑛, and the digital image 

 

chose the different 𝑟 will have a different corresponding image and storage for 

percent. 

 

Using the command subplot, they can plot all these approximations along with 

the original image in the same window for easy comparison. 

 

Moreover, they can compute the error between the original image and its 

approximations. One way of doing this is through the Frobenius norm of a matrix 

which is defined as 
 

 

 

Let 𝐴𝑐 represent a compressed version of the image 𝐴: We define the relative 

error as 

 

 

Students can compute the relative error in the Frobenius norm of the image 𝐴 at 

different ranks and check if the results of the norm roughly agree with the error 

based on visual perception. They can investigate, for example, how large does 

the rank needs to be so that the relative error (in the Frobenius norm) is less than 

5%. 
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Grayscale Original Image of Size 497x498 
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As we see the 10𝑡ℎ Iteration the image contains the 100 entries, also form the 

30th Iteration we get the image near to original image and form the 70𝑡ℎ Iteration 

i.e. A 70×70 matrix, with 4900 entries is significantly reduced the original image 

of size 497×498 matrix, with 247506 entries. So, there is no need to go up to 

100𝑡ℎ Iteration. 

In the following examples, we will show how the SVD works in several 

applications in DIP. 

 

3. Some Singular Value Decomposition (SVD) Properties in DIP: 

The first property of SVD is that: 

a- The singular values 𝜎1,2,…,𝜎𝑛 are unique, but the matrices 𝑈 and 𝑉 are not 
unique. 

b- The SVD method is a robust and reliable orthogonal matrix decomposition 

method. 

 

Due to SVD conceptual and stability reasons, it becomes more and more popular 

in the signal processing area. SVD is an attractive algebraic transform for image 

processing. SVD has prominent properties in imaging. Although some SVD 

properties are fully utilized in image processing, others still need more 

investigation and contributed to it. 

 

c- The SVD packs the maximum signal energy into as few coefficients. It has 

the ability to adapt to the variations in local statistics of an image. However, 

SVD is an image adaptive transform; the transform itself needs to be represented 

in order to recover the data. 

 

d- The SVD method decomposes a matrix into orthogonal components with 

which optimal sub rank approximations may be obtained. The largest object 

components in an image found using the SVD generally correspond to 

eigenimages associated with the largest singular values, while image noise 

corresponds to eigenimages associated with the smallest singular values. The 

 

SVD is used to approximate the matrix decomposing the data into an optimal 

estimate of the signal and the noise components. This property is one of the
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most important properties of the SVD decomposition in noise filtering, 

compression and forensic which could also be treated as adding noise 

in a proper detectable way. 

 


