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1. Some Applications of the Singular Value Decomposition (SVD) in 

DIP: 

 
a- Security: Image watermarking 

b- Image Compression 

c- Image Denoising 

d- Image Forensic 

e- Solving of Image Similarity Puzzle. 
f- In data mining 

g- Background Subtraction. 

h- Clustering and Classification. 

i- Structure and Motion. 

j- Restoration, Denoising, and Deblurring. 

k- Image Segmentation. 

l- Medical Image Reconstruction. 

m- Image Encryption. 

n- Face Recognition by Low-Rank Matrix approximation of the SVD. 

o- Restoration (restoring blurry and noisy images) by Inverse and Pseudo- 

inverse 

 

1- Security: Image watermarking 

Most of the developed SVD based watermarking techniques utilizes the stability 

of singular values (SVs) that specify the luminance (energy) of the image layer. 

That is why slight variations of singular values could not influence remarkably 

on the cover image quality. Developed SVD based techniques either used the 

largest SVs or the lowest SVs to embed the watermark components either 

additively or by using quantization. 

 

Example: 
As an application of the SVD method we give the following algorithm of 

Image watermarking: 
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2- Image Compression 

SVD with the maximum energy packing property is usually used in compression. 

When an image is SVD transformed, it is not compressed, but the data take a 

form in which the first singular value has a great amount of the image 

information. With this, we can use only a few singular values to represent the 

image with little differences from the original. 

 

As mentioned above, SVD decomposes a matrix into orthogonal components 

with which optimal sub rank approximations may be obtained. 
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When compressing the image, the sum is not performed to the very last SVs, 

the SVs with small enough values are dropped. 

 

Using the Truncated form of SVD, the transformation with rank 𝑟 may offer 
significant savings in storage over storing the whole matrix with acceptable 

 

 

 

 

The block diagram of the SVD based Compression 

 

 

The compression ratio can be calculated as follows: 
 

   

where 𝑅 is the compression percentage, 𝑘 is the chosen rank for truncation; 𝑚 
and 𝑛 are the number of rows and columns in the image respectively. 

The following shows compressed images with different chosen ranks for 

truncation that result in different compression ratios. 
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SVD Based Compression (a) Original (b) Compression 47% (truncation to k=60) 

(c) Compression 16% (truncation to k=20) 

 

 

The following table illustrates the different truncation levels k used for 

compressing the image shown in the above figure and the resultant compression 

ratio for each truncation level. 

Peak Signal to Noise Ratio (PSNR) is also illustrated corresponding to the 

different compression ratios to offer objective quality measures. 

 

Compression vs. PSN 

The PSNR block computes the peak signal-to-noise ratio, in decibels, between 

two images. This ratio is often used as a quality measurement between the 
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original and a compressed image. The higher the PSNR, the better the quality of 

the compressed or reconstructed image. 

 

Example 1: 
Multiplication of matrices also has applications in digital image processing. 

Consider the singular value decomposition (SVD) that consists of writing a 

matrix 𝐴𝑚×𝑛 as the product of three matrices: 

 

where 𝑈 and 𝑉 are orthogonal matrices (that is, 𝑈𝑇𝑈 and 𝑉𝑇 𝑉 are 𝑚×𝑚 and 

𝑛×𝑛 identity matrices, respectively) and S is a matrix whose elements 𝜎𝑖,j are 

equal to zero for 𝑖 ≠𝑗 and 𝜎1,1 ≥𝜎2,2 ≥⋯≥ 𝜎𝑘,𝑘 ≥ 0, with 𝑘=𝑚𝑖𝑛{𝑚,𝑛}. Here is an 

example of the SVD decomposition: 
 

 

 

It can be shown that every matrix has an SVD decomposition. Moreover, 

algorithms exist that allow us to calculate such decompositions using a computer. 

The key point of our example is to observe that if 𝑢1, 𝑢2, . . . , 𝑢𝑚 are the columns 

of the matrix 𝑈 and 𝑣1, 𝑣2, . . . , 𝑣𝑛 are the columns of the matrix 
𝑉, then 

 

 
 

Why is that? Suppose that 𝐴, a grayscale image of size 1000 × 1000, must be 
transmitted from a satellite to a laboratory on Earth. In principle, the satellite  
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would have to send 1 million numbers (one for each pixel). As typically only the 

first elements 𝜎𝑖,𝑖 of the matrix S of the SVD decomposition for 𝐴 are significant 
(the others are “small”), it is enough, then, that the satellite sends, 
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say, the 20 first columns of 𝑈 and 𝑉, and the 20 first numbers 𝜎𝑖,𝑖 (totaling only 

20 * 1000 + 20 * 1000 + 20 = 40020 numbers that must be sent). Upon receiving 

these data, the laboratory on Earth calculates the matrix 𝜎1,1𝑢1𝑣𝑇 + 
𝜎2,2𝑢2𝑣𝑇 + ⋯ + 𝜎20,20𝑢20𝑣𝑇  that  will  give  an  approximation  of  the 

2 20 

original image. Let’s see an example: the picture below has 720 × 524 = 

377280 pixels. 
 

 

 

 

 

From the SVD decomposition of the corresponding matrix of this image, we 
can calculate the matrices 𝑠 𝑢 𝑣 𝑇 + 𝑠 𝑢 𝑣 𝑇 + ⋯ + 𝑠𝑟 𝑟𝑢𝑟 𝑣𝑟𝑇 for 𝑟 = 1, 5, 10 

1,1  1  1 2,2  2  2 , 

and 20. These matrices generate approximations to the original image, as 
illustrated in the following figures. Notice that the original image corresponds 

to the case 𝑟 = 524. It is quite impressive, is it not? 
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Example 2: 

Students can be introduced to the singular value decomposition (SVD) method 

to compress data so that the original image could be reconstructed with much 

fewer data. An example of image compression using SVD is shown below. The 

relative error in the Frobenius norm of the original image is given at different 

ranks. 

 

Note: Using Matlab, [𝑈, S, 𝑉] = SVD(𝐴) performs the singular value 

decomposition. 

 

Compressed images and relative errors using SVD at different ranks 
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Example 3: 

The following is a 600×600 image of a grassy field. 

 

 

This image has a rank of 600, which means it will have 600 singular values. We 

can apply a low-rank approximation and take a reduced number of singular 

values to form a rank-k approximation of the original matrix. 

 

For 10 singular values, we get the following image: 

 

This image is a little too fuzzy since only taking the 10 largest singular values 

compressed it too much. After a few tries, the number of singular values that 
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gave a decent image was determined to be around 50. Here is the image with 50 

singular values: 

 

 

This image is not as high of quality as the original, but for using 50 singular 

values instead of 600, the quality is pretty good. We also compressed the image 

in the process of removing singular values. If we take the SVD of the original 

image, we get the following matrix sizes: 

 

𝑈=600×600=360000 elements 

S=600×600=360000 elements 

𝑉=600×600=360000 elements 

This means the total number of matrix entries needed to reconstruct the image 

using the SVD is 1080000 which did not do any compression on the image (it 

increases the number of elements needed). If we apply the low-rank 

approximation we get the following matrix sizes: 

𝑈=600×50=30000 elements 

S=50×50=2500 elements 

𝑉=50×600=30000 elements 

Using the low-rank approximation by taking only the 50 largest singular values 

reduces the total number of matrix elements needed to 62500. The original 

600×600 image matrix needs 360000 entries to represent grass, but with the low-

rank approximation, we can now represent the grass using just 62500 elements. 

We just reduced the total number of elements needed by 82.6%. 
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3. Image Denoising 

SVD has the ability to manipulate the image in the base of two distinctive data 

and noise subspaces which is usually used in noise filtering and also could be 

utilized in watermarking. Since the generic noise signal filtering model assumes 

the noise can be separated from the data, SVD locates the noise component in a 

subspace orthogonal to the data signal subspace. Therefore, SVD is used to 

approximate the matrix decomposing the data into an optimal estimate of the 

signal and the noise components. Image noise manifests itself as an increased 

“spatial activity” in the spatial domain that guides to increasing the smaller 

singular values in the SVD domain. 

 

Example: Noise Reduction 

An image of a black and white rectangle: 
 

 

 

 

 

The image is treated as a matrix where 1 is white and 0 is black. Using the SVD 

leads to singular values of 14.72, 5.13, and 3.314. There are three singular values 

because the rank of the matrix is 3. Now let’s add some uniform random noise 

to the image: 
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The rank of the new image matrix is now 15. Using the SVD to find the singular 

values of the new image matrix gives the first three singular values as 13.17, 

3.85, and 2.52. The rest of the singular values are less than 0.6. If we set all the 

singular values less than 0.6 to zero, we get the following image: 

 

By setting all the singular values to zero that are less than 0.6, we reduced the 

noise in the image. The noise is still visible, but it is much less. 

 

4.  Image Forensic 

For the current digital age, digital forensic research becomes imperative. 

Counterfeiting and falsifying digital data or digital evidence with the goal of 

making illegal profits or bypassing laws is the main objective for the attackers. 

The forensic research focuses on many tracks; steganography, watermarking, 

authentication, labeling, captioning, etc. Many applications were developed to 

satisfy consumer requirements such as labeling, fingerprinting, authentication, 

copy control for DVD, hardware/ software watermarking, executables 

watermarks, signaling (signal information for automatic counting) for propose 

of broadcast monitoring count. 

The proposed forensic tool is based on efficient additively embedding the 

optimal watermark data subspace into the host less significant subspace (noise 

subspace). This forensic tool can be utilized in all the forensic applications with 

some kind of adaptation in the embedding region based on the required 

robustness. Although many SVD based embedding techniques for many forensic 

purposes are carried out additively in singular values, they considered scaled 

addition without considering the wide range of singular values. 

 

Example 1: Face Recognition 

This example demonstrates how to use the SVD approach for image processing 

in the area of Face Recognition (FR). 

 

To perform face recognition with SVD, we treated the set of known faces as 

vectors in a subspace, called “face space”, spanned by a small group of 
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“basefaces”. The projection of a new image onto the baseface is then compared 

to the set of known faces to identify the face. 

 

The test is under the training set with image Size: M = 92 x 112 = 10,304, the 

number of known individuals: N = 20, Different Conditions: All frontal and 

slight tilt of the head, different facial expressions. 

Essentially, a face image is of M (say 10,000) dimension. But the rank r of matrix 

A is less than or equals N. For most applications, a smaller number of basefaces 

than r are sufficient for identification. In this way, the amount of computation is 

greatly reduced. The following figures show the base face image, the average of 

training set image, and the training set image we used for this experiment. 

 

Training Set Images Flow chart of Face Recognition with SVD A Computed Mean 

Face Image of Training Set Images 
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On the other hand, it is possible to be widely believed that the singular values 

are more important since its uniqueness; but it is naturally thinking that SVs are 

the most important attribute of image matrix used for face recognition. 

However, with experiments on exchange the SVs of two images, the result is 

very interesting and it shows that the singular vectors (left and right) are more 

important for reconstruction of the original image. The first experiment was 

designed to use two person’s face images, on which we performed SVD 

decomposition. For example, the face images of Janet (𝐴1) and Andy (𝐴2) was 

decomposed into 𝑈, S, 𝑉 so that: 

1�𝑆�×�1�𝑈�=� �1�𝐴 �𝑇�𝑉�× 

2�𝑆�×�2�𝑈�=� �2�𝐴 �𝑇�𝑉�× 

Then we did the combination of the singular values and singular vectors, the 
result shows in the following figures: 

 

a.) Combination of 
𝑈1 × S1 × 𝑉1𝑇 

b.) Combination of 
𝑈1 × S1 × 𝑉2𝑇 

c.) Combination of 
𝑈2 × S1 × 𝑉1𝑇 

d.) Combination 
of 
𝑈2 × S1 × 𝑉2𝑇 
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e.) Combination of 

𝑈1 × S2 × 𝑉1𝑇 

 
 
 
 

f.) Combination of 
𝑈1 × S2 × 𝑉2𝑇 

 
 
 
 
g.) Combination of 

𝑈2 × S2 × 𝑉1𝑇 

 
 
 
 
h.) Combination of 

𝑈2 × S2 × 𝑉2𝑇 

Result of Exchanged Singular Value with Singular Vectors 
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In the above images: 

 

1-  Image a) shows the combination of 𝑈1 × S1 × 𝑉1 , which is an original image 

of Janet. 

2- When we combined Janet’s SVs with Andy’s singular vector, it shows Andy’s 

face image (d). The image has a different brightness with Andy’s original 

image. 

3- Image e) shows Janet’s face, but it is a combination of Andy’s SVs and Janet’s 

singular vectors. 

4- When we combined two pairs of singular vectors U and V, which are from two 

images respectively, the outcome images look like a “ghost”. The result shows 

in b), c), f) and g). 

We also tested the two images, one is a face image and the other is not a face 

image (e.g. flower). The experimentation showed the same result as two face 

images. 

From the result, we see that, though the singular values are unique in SVD 

decomposition, the singular vectors are more important for image recognition. 

This fact indicates that deep research and further investigation of characteristics 

of SVD in image processing are necessary. 

Example 2: Face data 

In this example, we use some data that make up an image of a face and show 

how the SVD can be used to produce varying approximations to this “dataset”. 

Here is the original data. 
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If we take the SVD and plot the squared and normalized singular values, we can 

see that the data can be explained by just a few singular vectors, maybe 4 or 5. 

Now we can start constructing approximations to the data using the left and right 

singular vectors. Here we create one using just the first left and right singular 

vectors. 

 

We can also create ones using 5 and 10 singular vectors, which presumably 

would be better approximations. 

 

Now we can plot each one of these approximations along with the original data. 
 

 

Here, the approximation using 1 singular vector is pretty poor, but using 5 gets us pretty close to the truth. Using 10 

vectors doesn’t seem to add much to the features, maybe just a few highlights. So 5 singular vectors is a reasonable 

approximation in this c 

 

 

 

 

 

 

 

 

 


