
Study Year: 2024-2025

 مولعلا ةيلك

ةیكذلا ةیبطلا ةمظنلأا مـــــــــسق

Intelligent Medical Systems Department

Subject: Building User Interfaces
Class: 3rd

Lecturer: Asst.Lect Mustafa Ameer Awadh

Lecture: (7)

P a g e | 2

Intelligent Medical Systems Department
Application development– Lecture (7)
3rd Stage

Asst.Lect. Mustafa Ameer Awadh

Building User Interfaces

The basic building block for a user interface in Android is a View object.
Created from the View class, a View occupies a rectangular area on the
screen and is responsible for drawing and event handling. It serves as the
base class for widgets, which are interactive UI components like buttons,
text fields, and more.

Another key element is the ViewGroup. A subclass of View, the
ViewGroup acts as an invisible container that holds other Views or even
other ViewGroups, defining their layout properties.

At the third level, we have various layouts, which are subclasses of the
ViewGroup class. A layout defines the visual structure of an Android user
interface. Layouts can be created dynamically at runtime using
View/ViewGroup objects, or they can be defined in a simple XML
file located in the res/layout folder of the project. For example, a layout
file named main_layout.xml would be placed in res/layout to specify the
arrangement of UI components.

Fig.1 : Layout Structure .

P a g e | 3

Intelligent Medical Systems Department
Application development– Lecture (7)
3rd Stage

Asst.Lect. Mustafa Ameer Awadh

types of layouts

In Android Studio, there are several types of layouts that help organize
and structure UI components. Here are some of the main types:

1. LinearLayout
o Arranges child elements in a single row (horizontal) or

column (vertical).
o Useful for simple layouts where components need to be

aligned in a straight line.
2. RelativeLayout

o Positions child elements relative to each other or to the parent
container.

o Allows for flexible and dynamic arrangements but can
become complex with multiple elements.

3. ConstraintLayout
o A versatile layout that allows for complex positioning and

alignment.
o Uses constraints to position elements, making it ideal for

creating responsive designs that adapt to different screen
sizes.

4. FrameLayout
o A simple layout that displays one view on top of another,

with each view stacked.
o Useful for overlaying views or displaying a single item, such

as a video or image.
5. TableLayout

o Organizes child elements into rows and columns, similar to
an HTML table.

o Useful for data display but can be limiting for more complex
layouts.

P a g e | 4

Intelligent Medical Systems Department
Application development– Lecture (7)
3rd Stage

Asst.Lect. Mustafa Ameer Awadh

6. GridLayout
o Divides the layout into a grid of rows and columns, allowing

child views to occupy multiple cells.
o Offers a more structured, grid-like arrangement, suitable for

photo galleries or icon grids.

Each layout type has its strengths and is selected based on the specific
needs of the app interface.

Layout Attribute

In Android Studio, layouts come with various attributes that control the
appearance, size, and behavior of UI components. Here are some
commonly used layout attributes:

1. Width and Height
o android:layout_width and android:layout_height: Set the

width and height of a view.
o Common values include match_parent (fills the parent

container) and wrap_content (adjusts to fit the content).
2. Orientation

o android:orientation: Used in LinearLayout to specify the
layout direction (horizontal or vertical).

3. Gravity
o android:gravity: Controls the alignment of content within a

view, such as centering text in a TextView.
o android:layout_gravity: Aligns the view itself within its

parent (e.g., centering a button within a layout).

P a g e | 5

Intelligent Medical Systems Department
Application development– Lecture (7)
3rd Stage

Asst.Lect. Mustafa Ameer Awadh

4. Padding and Margin
o android:padding: Adds space inside the boundaries of a view,

pushing its content inward.
o android:layout_margin: Adds space outside the view's

boundaries, separating it from other views.
5. Weight

o android:layout_weight: Used in LinearLayout to distribute
space among child views proportionally.

6. Visibility
o android:visibility: Controls whether a view is visible,

invisible, or gone (invisible and doesn’t take up space).
7. Constraints (specific to ConstraintLayout)

o layout_constraintTop_toTopOf, layout_constraintBottom_to
BottomOf: Set constraints to anchor views to each other or to
the parent layout.

o layout_constraintHorizontal_bias and layout_constraintVertic
al_bias: Adjust alignment within the constraints.

8. Column and Row Span (specific to GridLayout and
TableLayout)

o android:layout_columnSpan and android:layout_rowSpan:
Define how many columns or rows a view should span.

These attributes allow precise control over view placement, appearance, and
behavior within an Android layout.

P a g e | 6

Intelligent Medical Systems Department
Application development– Lecture (7)
3rd Stage

Asst.Lect. Mustafa Ameer Awadh

Create sign in interface on android studio:

Creating a sign-in interface in Android Studio is a fundamental project for
any developer aiming to build interactive and user-secure mobile
applications. Sign-in screens provide a gateway for user authentication,
enabling apps to store and personalize user experiences based on login
credentials. Using Android Studio, developers can design a sign-in
interface with user-friendly components such as EditText fields for
username and password, buttons for interaction, and a feedback area to
guide users during login attempts.

To build a basic sign-in interface, Android developers use XML to define
the UI layout and Java or Kotlin to handle functionality, like checking
login credentials and providing feedback. Android Studio’s Gradle-based
environment simplifies managing dependencies and integrating libraries
that support authentication, security, and UI customization.

Fig.2 Sign in interface.

P a g e | 7

Intelligent Medical Systems Department
Application development– Lecture (7)
3rd Stage

Asst.Lect. Mustafa Ameer Awadh

Step 1: Create the Layout (XML file)

In the res/layout folder, create an XML file named activity_signin.xml:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 android:padding="16dp">

 <EditText
 android:id="@+id/etUsername"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:hint="Username"
 android:inputType="text" />

 <EditText
 android:id="@+id/etPassword"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:hint="Password"
 android:inputType="textPassword" />

 <Button
 android:id="@+id/btnSignIn"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="Sign In" />

 <TextView
 android:id="@+id/tvSignInResult"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center"
 android:padding="8dp"
 android:text=""
 android:textColor="#FF0000" />
</LinearLayout>

P a g e | 8

Intelligent Medical Systems Department
Application development– Lecture (7)
3rd Stage

Asst.Lect. Mustafa Ameer Awadh

Or we can use desigin icon to drug the component like
Button,TextView...e.g.Fig.3 showing the GUI editor.

Fig.3 Showing GUI Editor.

P a g e | 9

Intelligent Medical Systems Department
Application development– Lecture (7)
3rd Stage

Asst.Lect. Mustafa Ameer Awadh

Step 2: Create the Java Activity (MainActivity.java)

In the java folder, create a new Java class named MainActivity.java:
package com.example.signinapp;

import androidx.appcompat.app.AppCompatActivity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;
import android.widget.TextView;
import android.widget.Toast;

public class MainActivity extends AppCompatActivity {

 private EditText etUsername, etPassword;
 private TextView tvSignInResult;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 etUsername = findViewById(R.id.etUsername);
 etPassword = findViewById(R.id.etPassword);
 tvSignInResult = findViewById(R.id.tvSignInResult);
 Button btnSignIn = findViewById(R.id.btnSignIn);

 btnSignIn.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 String username = etUsername.getText().toString().trim();
 String password = etPassword.getText().toString().trim();

 // Simple sign-in logic
 if (username.equals("admin") && password.equals("1234")) {
 tvSignInResult.setText("Sign-In Successful");
 Toast.makeText(MainActivity.this, "Welcome " + username,
Toast.LENGTH_SHORT).show();
 } else {
 tvSignInResult.setText("Invalid Username or Password");
 Toast.makeText(MainActivity.this, "Sign-In Failed",
Toast.LENGTH_SHORT).show();
 }
 }
 });
 }
}

P a g e | 10

Intelligent Medical Systems Department
Application development– Lecture (7)
3rd Stage

Asst.Lect. Mustafa Ameer Awadh

Explanation of Code:

This code is a simple Android sign-in application created using Java.
The program uses basic authentication logic to check if the username
and password match preset values. Let’s break down each part:

2.Package Declaration
package com.example.signinapp;

This line declares the package name for the application. It helps
uniquely identify the app and organizes code files.

2. Imports
import androidx.appcompat.app.AppCompatActivity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;
import android.widget.TextView;
import android.widget.Toast;

These import statements allow the app to use Android classes needed for
the user interface, such
as AppCompatActivity, Button, EditText, TextView, and Toast.

3. Class Declaration
public class MainActivity extends AppCompatActivity {

The MainActivity class extends AppCompatActivity, which
provides compatibility support for different versions of Android and acts
as the main activity that handles user interactions.

P a g e | 11

Intelligent Medical Systems Department
Application development– Lecture (7)
3rd Stage

Asst.Lect. Mustafa Ameer Awadh

4. Variable Declaration
private EditText etUsername, etPassword;
 private TextView tvSignInResult;

Here, the app declares variables for the UI elements:

• etUsername and etPassword are EditText fields where users input
their username and password.

• tvSignInResult is a TextView to display the result of the sign-in
attempt (success or failure).

5. onCreate() Method

@Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

The onCreate method is called when the activity starts. Inside this
method:

• setContentView(R.layout.activity_main); sets the layout for the
activity from activity_main.xml.

6. Initialize Views
 etUsername = findViewById(R.id.etUsername);
 etPassword = findViewById(R.id.etPassword);
 tvSignInResult = findViewById(R.id.tvSignInResult);
 Button btnSignIn = findViewById(R.id.btnSignIn);

These lines link the Java variables with the UI components defined
in activity_main.xml by their id.

P a g e | 12

Intelligent Medical Systems Department
Application development– Lecture (7)
3rd Stage

Asst.Lect. Mustafa Ameer Awadh

7. Button Click Listener

btnSignIn.setOnClickListener(new	View.OnClickListener()	
{	@Override	public	void	onClick(View v)	{

A setOnClickListener is set up for the Sign In button. When the button is
clicked, the onClick method executes.

8. Retrieve and Trim Input Text

String username = etUsername.getText().toString().trim();
String password = etPassword.getText().toString().trim();

• username and password are retrieved from the EditText fields.
• trim() removes any leading or trailing whitespace from the inputs.

9. Simple Sign-In Logic
• if (username.equals("admin") &&

password.equals("1234")) {
 tvSignInResult.setText("Sign-In Successful");
 Toast.makeText(MainActivity.this, "Welcome " +
username, Toast.LENGTH_SHORT).show();
 } else {
 tvSignInResult.setText("Invalid Username or
Password");
 Toast.makeText(MainActivity.this, "Sign-In Failed",
Toast.LENGTH_SHORT).show();
 }
 }
 });
 }
}

1-This section checks if the entered username is "admin" and the
password is "1234".

2- If the condition is true, it means the sign-in was successful:

P a g e | 13

Intelligent Medical Systems Department
Application development– Lecture (7)
3rd Stage

Asst.Lect. Mustafa Ameer Awadh

3- tvSignInResult.setText("Sign-In Successful"); updates
the TextView to show "Sign-In Successful".

4- A Toast message displays a welcome message with the username.
5- If the condition is false, the sign-in fails:
6- tvSignInResult.setText("Invalid Username or Password"); updates

the TextView to show "Invalid Username or Password".
7- A Toast message displays "Sign-In Failed."

