Lecture# 7 semester# 1

Acid Base Balance

by: lecturer Dr. Sadiq Salam H. AL-Salih

> Al-Mustaqbal University Nursing College 4th Class Critical Care Nursing

Introduction

- The major function of the **pulmonary system** (lungs and pulmonary circulation) is to deliver oxygen to cells and remove carbon dioxide from the cells.
- If the patient's history and physical **examination reveal evidence of respiratory dysfunction**, **diagnostic test will help** identify and evaluate the dysfunction.
- ABG analysis is one of the first tests ordered to assess respiratory status because it helps evaluate gas exchange in the lungs.
- Acid Base Controlled by the lungs, kidneys, and buffers.
- Disrupted by vomiting, diarrhea, respiratory failure, kidney failure, infections and ingestions

Principles of Acid-Base Disorders

Plasma pH is an indicator of **hydrogen ion (H+) concentration** and measures the acidity or alkalinity of the blood. **Homeostatic mechanisms** keep **pH within a normal range (7.35 to 7.45).**

The H+ concentration is extremely important: The **greater** the concentration, **the more acidic** the solution and **the lower the pH**.

Blood pH is determined by the ratio of serum bicarbonate concentration ($[HCO_3^{-}]$) and partial pressure of CO₂ (Pa_{co2})

Principles of Acid-Base Disorders

- Metabolic acid-base disorders alter [HCO₃-]
- Respiratory acid-base disorders alter (Pa_{CO2})

Principles of Acid-Base Disorders

- Acidemia: serum pH < 7.35
- Alkalemia: serum pH > 7.45
- Acidosis: pathologic process that lowers [HCO₃-] or raises Pa_{CO2}
- Alkalosis: pathologic process that raises [HCO₃-] or lowers Pa_{CO2}

uffers
≻intracellular
 proteins phosphoric acid / hydrogen
phosphate $(H_3PO_4 / H_2PO_4^- + HPO_4^{2-})$

Organs act as acid base balancer

- Equilibrium with plasma
- High buffer capacity Haemoglobin main buffer for CO_2

• Excretion of CO_2 by alveolar ventilation: minimally 12,000 mmol/day

- Reabsorption of filtered bicarbonate: 4,000 to 5,000 mmol/day
- Excretion of the fixed acids (acid anion and associated H⁺): about 100 mmol/day

	Assessmen	t of Acid Ba	ase balance	2
	Arterial bloo	d	Mixed venou	s blood
		range		range
рН	7.40	7.35-7.45	рН	7.33-7.43
рСО	40 mmHg	35 - 45	pCO ₂	41 - 51
pO ₂	95 mmHg	80 - 100	pO ₂	35 – 49
Saturation	95 %	95 – 100	Saturation	70 – 75
HCO ₃ -	24 mEq/l	22 - 26	HCO ₃ -	24 - 28

	Ac	cid Ba	ase Disorders	
Disorder	рН	[H+]	Primary disturbance	Secondary response
Metabolic acidosis	\checkmark	1	↓ [HCO3-]	↓ pCO2
Metabolic alkalosis	1	\mathbf{r}	个[HCO3-]	↑ pCO2
Respiratory acidosis	•	1	↑ pCO2	↑[HCO3-]
Respiratory alkalosis	1	\checkmark	↓ pCO2	↓[HCO3-]

Respiratory Acidosis

- Airway
 - Obstruction, aspiration
- Drug-induced CNS depression
 - Alcohol, narcotics, IV sedation
- CNS origin
 - Myasthenia gravis, CNS injury, Guillain-Barré
- Pulmonary disease
 - Pneumonia, edema, COPD/emphysema

12/10/2023

Phase	РН	PaCO2	HCO3				
UNCOMPENSATED	Ļ	1					
Because there is no response from the kidneys yet to acidosis the HCO3 will remain normal							
Phase	РН	PaCO2	HCO3				
PARTIAL COMPENSAT	ED ↓	1	¢				
The kidneys start to respond to the acidosis by increasing the amount of circulating HCO3							
Phase	РН	PaCO2	HCO3				
FULL COMPENSATED	Ν	¢	¢				
PH return to normal PaCO2 & HCO3 levels are still high to correct acidosis							

Management
Correct the ventilation
—Establish airway
-Re-expand the lung
-Correct the CNS disease
-Bronchodilators
-Antibiotics

Practice1

- 25 year-old male, heroin overdose
 - pH 7.10 Pa_{CO2} 80 HCO₃- 24
 - Acidemic, Pa_{CO2} is elevated, acute change
 - Acute respiratory acidosis ([HCO₃-] unchanged)

Practice2

- 55 year-old man with COPD
 - pH 7.32 Pa_{CO2} 70 HCO₃⁻ 35
 - Acidemic, Pa_{CO2} is elevated \rightarrow respiratory acidosis

Respiratory alkalosis

- Hypoxia-mediated hyperventilation
 - High altitude, severe anemia, ventilation-perfusion mismatch
- CNS mediated
 - Psychogenic, CVA, increased ICP (tumor/trauma)
- Pharmacologic
 - Salicylates, caffeine, vasopressors, thyroxine
- Pulmonary
 - Pneumonia, PE, mechanical hyperventilation
- Hepatic
 - Encephalopathy

B. Respiratory alkalosis								
Phase	РН	F	aCO2	НСО	3			
UNCOMPENSATED	Î		Ļ					
Because there is no response from the kidneys yet to acidosis the HCO3 will remain normal								
Phase	Pł		PaCO2	HCO	3			
PARTIAL COMPENSA	TED ↑		\downarrow	\downarrow				
The kidneys start to respond to the alkalosis by decreasing the amount of circulating HCO3								
Phase	PH	P	aCO2	HCO	3			
FULL COMPENSATED	Ν		Ļ	Ļ				
PH return to normal PaCO2 & HCO3 levels are still low to correct alkalosis								

Practice 1

- pH 7.46 Pa_{CO2} 20 HCO₃⁻ 14
- Alkalemic, Pa_{CO2} is decreased \rightarrow respiratory alkalosis

Metabolic acidosis

- Acidemia created by increase in [H⁺] or decrease in [HCO₃⁻]
- Compensated by hyperventilation to reduce Pa_{CO2}
- Treatment
 - Treat the underlying condition and the pH will gradually normalize

C. Metabolic acidosis							
Phase	PH	1	PaCO2	HCO3			
UNCOMPENSATED	Ļ			\downarrow			
Because there is no response from the lungs yet to acidosis the PaCO2 will remain normal							
Phase		PH	PaCO2	HCO3			
PARTIAL COMPENSAT	'ED ↓		\downarrow	Ļ			
The lungs start to respond to the acidosis by decreasing the amount of circulating PaCO2							
Phase	PH		PaCO2	НСОЗ			
FULL COMPENSATED	Ν		\downarrow	Ļ			
PH return to normal PaCO2 & HCO3 levels are still low to correct acidosis							

Practice	1

- 23 year-old woman with seizure for 90 minutes.
 - pH 7.24 Pa_{CO2} 36 HCO₃⁻ 14
 - Acidemic, Pa_{CO2} is decreased \rightarrow metabolic acidosis

Metabolic alkalosis

- Volume-Contracted
 - Vomiting/gastric suction
 - Diuretics
- Normal Volume / Volume-Expanded
 - Severe potassium depletion
 - Hyperaldosteronism
 - Cushing's syndrome

D. Metabolic alkalosis								
Phase	PH	PaCO2	НСОЗ					
UNCOMPENSATED	↑		1					
Because there is no response from the lungs yet to alkalosis the PaCO2 will remain normal								
Phase	PH	PaCO2	HCO3					
PARTIAL COMPENSAT	ED ↑	¢	↑					
The lungs start to respond to the alkalosis by increasing the amount of circulating PaCO2								
Phase	РН	PaCO2	HCO3					
FULL COMPENSATED	Ν	1	¢					
PH return to normal PaCO2 & HCO3 levels are still high to correct alkalosis								

Practice1

• 29 year-old pregnant woman who is vomiting.

- pH 7.58 Pa_{CO2} 48 HCO₃⁻ 40
- Alkalemic, Pa_{CO2} is increased \rightarrow metabolic alkalosis

Additional Tutorial

Example 1

Jane Doe is a 45-year-old female admitted to the nursing unit with a severe asthma attack. She has been experiencing increasing shortness of breath since admission three hours ago. Her arterial blood gas result is as follows

Clinical Laboratory:

pH 7.22 PaCO2 55 HCO3 25

Follow the steps:

- 1. Assess the pH. It is low therefore, we have acidosis.
- 2. Assess the PaCO2. It is high and in the opposite direction of the pH.
- 3. Assess the HCO3. It has remained within the normal range (22-26).

Acidosis is present (decreased pH) with the PaCO2being increased, reflecting a primary respiratory problem. For this patient, we need to improve the ventilation status by providing oxygen therapy, mechanical ventilation or by administering bronchodilators.

Example 2

John Doe is a 55-year-old male admitted with a recurring bowel obstruction. He has been experiencing intractable vomiting for the last several hours, Here is his arterial blood gas result:

Clinical Laboratory:

pH 7.50 PaCO2 42 HCO3 33

Follow the steps again:

• 1. Assess the pH. It is high (normal 7.35-7.45), therefore, indicating alkalosis.

2. Assess the PaCO2. It is within the normal range (normal 35-45).

3. Assess the HCO3. It is high (normal 22-26) and moving in the same direction as the pH.

Alkalosis is present (increased pH) with the HCO3 increased, reflecting

a primary metabolic problem. Treatment of this patient might include administration of I.V. fluids and measures to reduce the excess base.