
2025-Study Year: 2024

 كلية العلوم

 ةـــيــــــذكـــة الـيـبـطــــة الــــمــــظـــم الانــــــــــســق
Intelligent Medical Systems Department

Lap (5)

Lists & Linked List
Part 1

Subject: Data structure

Class: second

Lecturer: Prof.Dr. Mehdi Ebady Manaa

 Programmer:- Fatima Hussein Jawad

P a g e | 2

Intelligent Medical Systems Department

Data Structures – Lap (5)
Second Stage

Lecturer Name

Asst.Prof.Dr.Mehdi Ebady Manna

Lists

In Python, lists are one of the most common and widely used data types. They are a data

structure that allows you to store multiple items in a single variable. You can store any

type of data in a list, such as numbers, strings, or even other lists.

Importance of Lists in Python

 Stores Multiple Data: Lists allow you to group multiple pieces of data in one

variable, making it easier to manage and work with the data.

 Dynamic: Unlike in some other languages, lists in Python can change in size,

meaning you can easily add or remove items.

 Can Store Multiple Data Types: You can store different types of data in a single

list, such as numbers, strings, and booleans.

How to Create a List in Python ?

To create a list, use square brackets *+, and place the elements inside separated by

commas. Here’s a simple example:

numbers = *1, 2, 3, 4, 5+ # A list of integers

fruits = *"apple", "banana", "cherry"+ # A list of strings

mixed = *1, "hello", 3.14, True+ # A list with mixed data types

Basic Operations on Lists: Adding Items: You can add items to a list using the append()

function to add to the end or insert() to add at a specific position.

P a g e | 3

Intelligent Medical Systems Department

Data Structures – Lap (5)
Second Stage

Lecturer Name

Asst.Prof.Dr.Mehdi Ebady Manna

1-Adding Items: You can add items to a list using the append() function to add to the

end or insert() to add at a specific position.

fruits.append("orange") # Adds "orange" at the end

fruits.insert(1, "mango") # Inserts "mango" at position 1

2-Accessing List Items: Access items using indexes, where indexing starts at 0.

print(fruits*0+) # Prints the first item, "apple"

3-Updating a List Item:

fruits*1+ = "blueberry" # Changes the second item to "blueberry"

4-Removing Items: You can remove items using remove(), pop(), or del.

fruits.remove("banana") # Removes "banana"

fruits.pop(2) # Removes item at position 2

del fruits*0+ # Deletes the first item

5-Length of the List: You can get the number of items in the list using len().

print(len(fruits)) # Prints the length of the list

Additional Examples of Lists

Looping Through a List:

for fruit in fruits:

 print(fruit)

Checking if an Item Exists:

if "apple" in fruits:

 print("Apple is in the list!")

P a g e | 4

Intelligent Medical Systems Department

Data Structures – Lap (5)
Second Stage

Lecturer Name

Asst.Prof.Dr.Mehdi Ebady Manna

Benefits of Using Lists

1-Easier data management and manipulation.

2-Flexibility in working with data of various types and sizes.

3-Provides many useful operations, such as sorting, filtering, and iterating.

4-Lists are a powerful tool for organizing and processing data in various ways, making

them essential for Python programmers.

" How to create Class in Python "

1. Defining a Class in Python

A class is a kind of "blueprint" or "template" used to create objects with certain

attributes and methods.

Basic class structure:

class ClassName:

 def __init__(self, parameters): # Constructor method

 self.attribute = value # Here, we define the attributes

2. Simple Example: Creating a Class for a "Student"

You can illustrate with an example that defines a Student class with attributes for the

student's name and age, as well as a method to display this information.

class Student:

 def__ init__(self, name, age): # Constructor (initializer) method defines attributes

 self.name = name # Attribute for name

P a g e | 5

Intelligent Medical Systems Department

Data Structures – Lap (5)
Second Stage

Lecturer Name

Asst.Prof.Dr.Mehdi Ebady Manna

 self.age = age # Attribute for age # Method to display student's information

 def display_info(self):

 print(f"Name: ,self.name-, Age: ,self.age-")

Here, the __init__ method is a special method called automatically when an object is

created from the class. It serves as a constructor to initialize attribute values.

3. Creating an Object and Calling a Method

To show how to create an object from the class and call its methods, you can follow up

with this example:

student1 = Student("Ali", 21) # Creating an object of the class and setting attribute values

student1.display_info() # Calling display_info method to show student information

 Running this code will output:

Name: Ali, Age: 21

4. Adding a New Method to the Class

To make the example more practical, you can add a new method, such as update_age, to

update the student's age.

class Student:

 def__ init__(self, name, age):

 self.name = name

 self.age = age

 def display_info(self):

 print(f"Name: ,self.name-, Age: ,self.age-")

P a g e | 6

Intelligent Medical Systems Department

Data Structures – Lap (5)
Second Stage

Lecturer Name

Asst.Prof.Dr.Mehdi Ebady Manna

 def update_age(self, new_age): # Method to update the student's age

 self.age = new_age

 print(f"Updated age to ,self.age-")

5. Calling the New Method

After updating the class, you can now create an object and use the new methods:

student2 = Student("Fatima", 20)

student2.display_info() # Before updating

student2.update_age(21) # Updating the age

student2.display_info() # After updating

Key Points to Emphasize:

1. self : Refers to the current instance of the class and must be passed as the first

parameter in any class method.

2. __init__: This is a special method acting as a constructor, used to initialize the primary

attributes of an object.

3. Calling Methods: Methods are called using object_name.method_name().

 HOME WORK

1- What is the purpose of __init__ in a class?

2- What role does (self)play in a class?

3- How can we call a method inside a class using a specific object?

P a g e | 7

Intelligent Medical Systems Department

Data Structures – Lap (5)
Second Stage

Lecturer Name

Asst.Prof.Dr.Mehdi Ebady Manna

linked list:

 in this Lecture, we will learn about the implementation of a linked list in Python. To

implement the linked list in Python, we will use classes in Python. we know that a linked

list consists of nodes and nodes have two elements i.e. data and a reference to another

node. Let’s implement the node first.

Types of linked lists

❑Single Linked List

❑Double Linked List

❑Circular Linked List

❑Linked List with Header

❑Sorted Linked List

What is Linked List in Python ?

A linked list is a type of linear data structure similar to arrays. It is a collection of nodes

that are linked with each other. A node contains two things first is data and second is a

link that connects it with another node. Below is an example of a linked list with four

nodes and each node contains character data and a link to another node. Our first node

is where head points and we can access all the elements of the linked list using the head.

P a g e | 8

Intelligent Medical Systems Department

Data Structures – Lap (5)
Second Stage

Lecturer Name

Asst.Prof.Dr.Mehdi Ebady Manna

Creating a linked list in Python

In this LinkedList class, we will use the Node class to create a linked list. In this class, we

have an __init__ method that initializes the linked list with an empty head. Next, we

have created an insertAtBegin() method to insert a node at the beginning of the linked

list, an insertAtIndex() method to insert a node at the given index of the linked list, and

insertAtEnd() method inserts a node at the end of the linked list. After that, we have the

remove_node() method which takes the data as an argument to delete that node. In the

remove_node() method we traverse the linked list if a node is present equal to data

then we delete that node from the linked list. Then we have the sizeOfLL() method to

get the current size of the linked list and the last method of the LinkedList class is

printLL() which traverses the linked list and prints the data of each node.

Creating a Node Class

We have created a Node class in which we have defined a __init__ function to initialize

the node with the data passed as an argument and a reference with None because if we

have only one node then there is nothing in its reference.

class Node:

 def __init__(self, data):

 self.data = data

 self.next = None

Insertion in Linked List

Insertion at Beginning in Linked List

This method inserts the node at the beginning of the linked list. In this method, we

create a new_node with the given data and check if the head is an empty node or not if

the head is empty then we make the new_node as head and return else we insert the

head at the next new_node and make the head equal to new_node.

P a g e | 9

Intelligent Medical Systems Department

Data Structures – Lap (5)
Second Stage

Lecturer Name

Asst.Prof.Dr.Mehdi Ebady Manna

def insertAtBegin(self, data):

 new_node = Node(data)

 if self.head is None:

 self.head = new_node

 return

 else:

 new_node.next = self.head

 self.head = new_node

Insert a Node at a Specific Position in a Linked List

This method inserts the node at the given index in the linked list. In this method, we

create a new_node with given data , a current_node that equals to the head, and a

counter ‘position’ initializes with 0. Now, if the index is equal to zero it means the node is

to be inserted at begin so we called insertAtBegin() method else we run a while loop

until the current_node is not equal to None or (position+1) is not equal to the index we

have to at the one position back to insert at a given position to make the linking of

nodes and in each iteration, we increment the position by 1 and make the current_node

next of it. When the loop breaks and if current_node is not equal to None we insert

new_node at after to the current_node. If current_node is equal to None it means that

the index is not present in the list and we print “Index not present”.

Indexing starts from 0.

def insertAtIndex(self, data, index):

 new_node = Node(data)

 current_node = self.head

 position = 0

 if position == index:

P a g e | 10

Intelligent Medical Systems Department

Data Structures – Lap (5)
Second Stage

Lecturer Name

Asst.Prof.Dr.Mehdi Ebady Manna

 self.insertAtBegin(data)

 else:

 while(current_node != None and position+1 != index):

 position = position+1

 current_node = current_node.next

 if current_node != None:

 new_node.next = current_node.next

 current_node.next = new_node

 else:

 print("Index not present")

Insertion in Linked List at End

This method inserts the node at the end of the linked list. In this method, we create a

new_node with the given data and check if the head is an empty node or not if the head is

empty then we make the new_node as head and return else we make a current_node equal to

the head traverse to the last node of the linked list and when we get None after the

current_node the while loop breaks and insert the new_node in the next of current_node which

is the last node of linked list.

def inserAtEnd(self, data):

 new_node = Node(data)

 if self.head is None:

 self.head = new_node

 return

 current_node = self.head

P a g e | 11

Intelligent Medical Systems Department

Data Structures – Lap (5)
Second Stage

Lecturer Name

Asst.Prof.Dr.Mehdi Ebady Manna

 while(current_node.next):

 current_node = current_node.next

 current_node.next = new_node

#Example

Node definition

class Node:

 def __init__(self, data):

 self.data = data # Store the data

 self.next = None # Pointer to the next node

LinkedList definition

class LinkedList:

 def __init__(self):

 self.head = None # Head of the linked list

 # Add a new node to the end of the linked list

 def append(self, data):

 new_node = Node(data) # Create a new node

 if not self.head: # If the linked list is empty

 self.head = new_node

 return

 current = self.head

 while current.next: # Traverse to the end of the list

 current = current.next

 current.next = new_node

P a g e | 12

Intelligent Medical Systems Department

Data Structures – Lap (5)
Second Stage

Lecturer Name

Asst.Prof.Dr.Mehdi Ebady Manna

 # Display the elements of the linked list

 def display(self):

 current = self.head

 while current: # Traverse through the nodes

 print(current.data, end=" -> ")

 current = current.next

 print("None") # End of the linked list

Testing the LinkedList

linked_list = LinkedList()

linked_list.append(10)

linked_list.append(20)

linked_list.append(30)

print("Linked List elements:")

linked_list.display()

Explanation:

1. Node : Class

o Represents each node in the linked list.

o data: Holds the value of the node.

o next: A pointer to the next node.

2. LinkedList : Class

o Represents the linked list as a whole.

o head: Points to the first node of the list.

o append(data): Adds a new node with the given data to the end of the list.

o display(): Prints all elements of the linked list.

output :

Linked List elements:

10 -> 20 -> 30 -> None

