
2025-Study Year: 2024

 كلية العلوم
 قــســــــــــم الانـــظــــمــــة الــــطـبـيـة الـــذكــــــيـــة

Intelligent Medical Systems Department

Lap: (8)

Searching Algorithms in Python

Subject: Data Strectuer

Class: second

Lecturer: Prof.Dr. Mehdi Ebady Manaa

 Programmer:- Fatima Hussein Jawad

P a g e | 2

Intelligent Medical Systems Department

Data strectuer – Lap (8)
Second Stage

Lecturer Name

Asst.Prof.Dr. Mehdi Ebady Manna

Objectives:

1. Understand the concept of searching.

2. Learn the differences between the basic algorithms:

o Linear Search

o Binary Search

3. Implement simple Python examples to demonstrate the algorithms.

1. Linear Search:

Concept:

 Sequentially checks each element in the list until the desired element is

found or the list ends.

Steps:

1. Start at the first element.

2. If it matches the target, stop.

3. If not, move to the next element.

4. Repeat until the target is found or the list ends.

Example

def linear_search(arr, target):

 for index in range(len(arr)):

 if arr[index] == target:

 return f"Element {target} found at index {index}."

 return f"Element {target} not found in the list."

P a g e | 3

Intelligent Medical Systems Department

Data strectuer – Lap (8)
Second Stage

Lecturer Name

Asst.Prof.Dr. Mehdi Ebady Manna

numbers = [10, 20, 30, 40, 50]

print(linear_search(numbers, 30)) # Found

print(linear_search(numbers, 60)) # Not Found

output :

Element 30 found at index 2.

Element 60 not found in the list.

2. Binary Search:

Concept:

 Only works with sorted lists.

 Splits the list into halves repeatedly, narrowing the search range.

Steps:

1. Find the middle element.

2. If it matches the target, stop.

3. If the target is smaller, search in the left half.

4. If the target is larger, search in the right half.

5. Repeat until the target is found or the search range is empty.

Example

def binary_search(arr, target):

 left = 0

 right = len(arr) - 1

 while left <= right:

P a g e | 4

Intelligent Medical Systems Department

Data strectuer – Lap (8)
Second Stage

Lecturer Name

Asst.Prof.Dr. Mehdi Ebady Manna

 mid = (left + right) // 2 # Find the middle element

 if arr*mid+ == target:

 return f"Element ,target- found at index ,mid-."

 elif arr*mid+ < target:

 left = mid + 1 # Search in the right half

 else:

 right = mid - 1 # Search in the left half

 return f"Element ,target- not found in the list."

sorted_numbers = *10, 20, 30, 40, 50+

print(binary_search(sorted_numbers, 40)) # Found

print(binary_search(sorted_numbers, 15)) # Not Found

3. Comparison: Linear Search VS Binary Search

output :

Element 40 found at index 3.

Element 15 not found in the list.

P a g e | 5

Intelligent Medical Systems Department

Data strectuer – Lap (8)
Second Stage

Lecturer Name

Asst.Prof.Dr. Mehdi Ebady Manna

4. Additional Examples:

Practical Example - Searching in a List of Names:

Code

print(linear_search(numbers, 30)) # Found

print(linear_search(numbers, 60)) # Not Found

def binary_search(arr, target):

 left = 0

 right = len(arr) - 1

 while left <= right:

 mid = (left + right) // 2 # Find the middle element

 if arr[mid] == target:

 return f"Element {target} found at index {mid}."

 elif arr[mid] < target:

 left = mid + 1 # Search in the right half

 else:

 right = mid - 1 # Search in the left half

 return f"Element {target} not found in the list."

sorted_numbers = [10, 20, 30, 40, 50]

print(binary_search(sorted_numbers, 40)) # Found

print(binary_search(sorted_numbers, 15)) # Not Found

P a g e | 6

Intelligent Medical Systems Department

Data strectuer – Lap (8)
Second Stage

Lecturer Name

Asst.Prof.Dr. Mehdi Ebady Manna

names = ["Ali", "Hassan", "Fatima", "Sara", "Ahmed"]

Linear Search

print(linear_search(names, "Fatima"))

print(linear_search(names, "Zainab"))

Binary Search (after sorting the list)

names.sort()

print(binary_search(names, "Fatima"))

print(binary_search(names, "Zainab"))

output :

Linear Search Code Without Built-in Functions:

Here is a Python implementation of linear search without using built-in functions like find or

index:

P a g e | 7

Intelligent Medical Systems Department

Data strectuer – Lap (8)
Second Stage

Lecturer Name

Asst.Prof.Dr. Mehdi Ebady Manna

Code :

def custom_linear_search(arr, target):

 # Traverse each element one by one

 for i in range(len(arr)):

 if arr[i] == target: # If the target is found

 return f"Element {target} found at index {i}."

 return f"Element {target} not found in the list." # If the target is not found

numbers = [5, 12, 7, 19, 25]

print(custom_linear_search(numbers, 7)) # Found

print(custom_linear_search(numbers, 20)) # Not Found

Binary Search Code Without Built-in Functions:

Note: The list must be sorted before performing a binary search.

def custom_binary_search(arr, target):

 left = 0

 right = len(arr) - 1

 while left <= right:

 mid = (left + right) // 2 # Find the middle element

output :

Element 7 found at index 2.

Element 20 not found in the list.

P a g e | 8

Intelligent Medical Systems Department

Data strectuer – Lap (8)
Second Stage

Lecturer Name

Asst.Prof.Dr. Mehdi Ebady Manna

 if arr[mid] == target: # If the middle element is the target

 return f"Element {target} found at index {mid}."

 elif arr[mid] < target: # If the target is greater than the middle element

 left = mid + 1 # Search in the right half

 else: # If the target is smaller

 right = mid - 1 # Search in the left half

 return f"Element {target} not found in the list." # If the target is not found

sorted_numbers = [3, 8, 15, 20, 36]

print(custom_binary_search(sorted_numbers, 15)) # Found

print(custom_binary_search(sorted_numbers, 10)) # Not Found

Key Notes:

1. The above code does not rely on any built-in functions.
o Elements are manually checked using loops or calculations.

2. Binary search requires the list to be sorted beforehand.
If you want, you can implement a sorting algorithm like Bubble Sort to sort the list first.

Home work

 How can you optimize the linear search code to make it faster?

 What is the difference between using while and for loops in these algorithms?

 Write your own algorithm to find the last element in a list.

output :

Element 15 found at index 2.

Element 10 not found in the list.

