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Filtering is the process of keeping components of the signal with certain desired frequencies and removing 

is the cut-off frequency 

Fs as the sampling frequency 

Digital Filtering 4 
 

In this chapter, we’ll study digital filtering methods. Specifically, we’ll look into the following: 

 
• Filter specifications 

• Filtering in frequency domain 

• Filtering in time domain 

• Simple filter design – Sum and difference (SD) filters 

• Finite Impulse Response (FIR) filters 

• Infinite Impulse Response (IIR) filters (using MATLAB functions) 

 
4.1 Filter Specifications 

Filtering is the process of keeping components of the signal with certain desired frequencies and removing 

components of the signal with certain undesired frequencies. Very often, we keep the gain of the required 

    or close to 1            

or close to 0. In general, there are  p s  l  low-pass filter (LPF), high-pass-filter (HPF), band- 

pass filter (BPF) and band-stop filter (BSF). Each filter will have specific characteristics: 

 

•  – the range of frequency components that are allowed to pass 

• a  – the range of frequency components that are suppressed 

•   – ripples in the passband, the maximum amount by which attenuation in 

the passband may deviate from gain (which is normally 1) 

•  e  ripples in the stopband, the maximum amount by which attenuation in 

the stopband may deviate from gain (which is normally 0) 

•  o  – the minimum amount by which frequency components in the 

stopband are attenuated 

• a  a d – the band between the passband and the stopband. 

 

Magnitude frequency responses of ideal filters are shown in Figure 1 where fc is the cut-off frequency 

 

with F as the sampling frequency. 
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Figure 4.1: Ideal magnitude frequency responses (a) LPF (b) HPF (c) BPF (d) BSF. 
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Low-pass filter 

A LPF passes all low-frequency components below the cut-off frequency, fc and blocks all higher frequency 

components above fc 

fp and remove components higher than fs 

For example, consider a combination of three sinusoidal signals: 2 Hz, 5 Hz and 11 Hz as shown in 

Figure 4.3. 

The final output signals after LPF at fp =3 Hz with fs =4 Hz and fp =8 Hz with fs =9 Hz are shown in 

Figure 4.4. 

4.1.1 

A LPF passes all low-frequency components below the cut-off frequency, fc and blocks all higher frequency 

components above fc  Figure 4.2 shows the magnitude frequency response of a LPF in reality, where we 

can’t design ‘square’ type of filters as shown in Figure 4.1. So, there needs to be transition band between 

the passband and stopband. The edge frequencies are the end frequencies of passband (fp) or stopband 
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Figure 4.2: Magnitude frequency response of a LPF. 

 
 

 

Figure 4.3: A combination of three sinusoidal signals. 

 
 

 

(fs). So, a practical LPF will allow frequency components below fp and remove components higher than fs. 

 

Figure 4.3 

The final output signals after LPF at fp=3 Hz with fs=4 Hz and fp=8 Hz with fs=9 Hz are shown in 

Figure 4.4. 
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4.1.2 High-pass filter 

HPF passes all high-frequency components above the cut-off frequency, fc and blocks all lower frequency 

components below fc. 

it allows frequency components higher than fp and remove components below fs 

Consider the same combination of three sinusoidal signals: 2 Hz, 5 Hz and 11 Hz as previously. The final 

output signals after HPF at fs =3 Hz with 

 

 
 

Figure 4.4: LPF of the three sinusoidal signals. 
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Figure 4.5: Magnitude frequency response of a HPF. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

  

HPF passes all high-frequency components above the cut-off frequency, fc and blocks all lower frequency 

components below fc. The magnitude frequency response of a HPF in reality is shown in Figure 4.5 where 

 

Consider the same combination of three sinusoidal signals: 2 Hz, 5 Hz and 11 Hz as previously. The final 
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Band-pass and band-stop filters 

designed using a LPF and HPF. BSF passes all frequency components lower and higher than edge 

and blocks all frequencies between 

 

 

Figure 4.6: HPF of the three sinusoidal signals. 

 
 

4.1.3 

BPF passes all frequency components between edge passband frequencies, fp
1
<freq

(allow)
<fp

2 
and blocks 

all frequencies below and above edge stopband frequencies, freq
(block)

<fs
1
; freq

(block)
>fs

2
. A BPF can be 

designed using a LPF and HPF. BSF passes all frequency components lower and higher than edge passband 

frequencies, freq
(allow)

<fp
1
; freq

(allow)>fp2 and blocks all frequencies between fs1<freq(block)<fs2
. The magnitude 

frequency responses of a BPF and a BSF are shown in Figures 4.7 and 4.8. 
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Figure 4.9 shows the output signals after applying BPF at 

at 
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Figure 4.7: Magnitude frequency response of a BPF. 
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Figure 4.8: Magnitude frequency response of a BSF. 
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Figure 4.9 shows the output signals after applying BPF at fp1=4 Hz, fp2=6 Hz, fs1=3 Hz, fs2=7 Hz and BSF 
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Direct filtering in frequency domain 

Obtain the Discrete Fourier Transform (DFT) of the signal (from 0 to Fs 

Set to zero the values that are not in the required frequency range i.e. apply a rectangular 

window; 

Compute the Inverse Discrete Fourier Transform (IDFT). 

1=8 Hz and 2=25 Hz with 

N =100, Fs 

 

 
 

(a) 

 

(b) 

Figure 4.9: (a) BPF (b) BSF of the three sinusoidal signals. 

 

4.2  

Filtering can be done directly in the frequency domain using the following steps: 

 
 

 

For example, let use generate a combination of two sinusoidal signal with f  =8 Hz and f  =25 Hz with 

=100, F =200 Hz (shown in Figure 4.10) and say, we wish to design a LPF with fp=10 Hz and fs=12 Hz. 

Compute y=fft(x) in MATLAB and apply the rectangular window, i.e. set the values y(7:95)=0. As 

MATLAB indexing starts from 1, y(1:6) represents DFT values from 0 to 10 Hz16, which represents the 

passband range, the stopband range from 12 Hz to 100 Hz is represented by y(7:51). Due to symmetry, 

we also need to create mirror images of the passband and stopband resulting in the rectangular window 

as shown in Figure 4.11 (a). 

 

Figure 4.10: Combination of two sinusoidal signals (f1=8 Hz and f2=25 Hz). 
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Figure 4.11: Direct LPF (a) rectangular window with fp=10 Hz and fs=12 Hz (b) filtered output. 

 

Next, compute yf=ifft(y,'symmetric') and the low pass filtered signal is obtained as shown 

in Figure 4.11 (b). In MATLAB, it is useful to force conjugate symmetry, else complex values could be 

obtained due round-off errors in the fft and ifft operations. Figure 4.12 shows the whole procedure 

for the discussed example. This direct filtering method is simplistic to understand but has the disadvantage 

of high computation cost and requires chunks of data (i.e. real-time filtering is not possible). Thus we 

normally use finite impulse response (FIR) or infinite impulse response (IIR) filters to perform filtering. 
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4.3 Time domain filtering 

from an IIR digital filter is made up of previous inputs and previous outputs: 

where B and 

inputs only, so there is no feedback: 

n B x n  

complicated. 
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Figure 4.12: LPF example using direct filtering method. 

To solve the problems of direct filtering, we could filter in time domain and there are several time domain 

filtering methods. We will look at design of simple FIR filters and IIR filters using MATLAB. The output 

M N 

y[n] =  B[k]x[n − k] + A[ j]y[n − j]. (4.1) 
k =1 j =1 

 

 
(4.2) 

 
Figure 4.13 shows an example comparing direct filtering in the frequency domain with time domain 

 

 

 
  

  

 

y[ ] =  [k ] [ − k ] . 
k =1 

 

0 

where and A are the filter coefficients. The output from a FIR digital filter is made up of previous 

inputs only, so there is no feedback: 
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Simple FIR filters 

Simple FIR filter are also known as sum and/or difference filter. Consider a sum filter 

n + x n ]), 
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Figure 4.13: LPF comparison using direct frequency filtering and time domain methods. 

4.4 
 

 

for every data x[n] in the signal; this simple addition can be shown using Z-transform to act as a LPF! 

Considering (4.2), the filter coefficients are B[1]=0.5 and B[2]=0.5. 

 
For hardware design, the block diagram is shown in Figure 4.14. 

 

 
y[n] 

 
 
 

 
Figure 4.14: Block diagram of a simple sum filter. 

 
 
 
 

 

 
 

  

x[n]  x[n-1] 

 0.5 

 

0 

Simple FIR filter are also known as sum and/or difference filter. Consider a sum filter 

y[ ] = 
1 

(x[n] + [   − 1]), 
 

(4.3) 
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The advantages of such a filter are: 

Only one adder and one delay block is needed, so simple design and low cost; 

The filter coefficients are finite values (in this case they are 0.5), so no errors caused by 

round-off; 

It is an FIR filter, so it is stable 

It’s phase response is linear (more on this later). 

 

 
 

 

(see 

Figure 4.15). 

 

Figure 4.15: Magnitude response of the simple sum filter. 

The advantages of such a filter are: 

 Click on the ad to read more 

 

 

 

It is an FIR filter, so it is stable18; 
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Similarly, a HPF can be designed using a difference filter 

Fs 

The magnitude (gain) at normalised frequency 0 is 1 (i.e. 0 dB 

frequency is defined as the frequency when the gain drops 3 dB from maximum gain of 1, which is 0 dB. 

So when energy is half, i.e. gain=(1/2) 

can see that the 3 dB cut-off frequency (when gain=0.7071) is approximately  

Fs Fs /4 Hz and transition 

band is from Fs /4 to Fs /2. 

2 

 

 

 

 

y[n] = 
1 

(x[n] − x[n − 1]) . (4.4) 

The block diagram is shown in Figure 4.16. 

 

 
y[n] 

 
 
 

 
Figure 4.16: Block diagram of a simple difference filter. 

 
 

And the magnitude response is given in Figure 4.17. 

 

Figure 4.17: Magnitude response of the simple difference filter. 

 
 

The stopband frequency (when gain=0) is at 0 Hz, i.e. there is no stopband. The gain at Fs/2 Hz or  

rad/sample is 1 and hence, the edge passband frequency is at Fs/4 Hz (using 3 dB cut-off approach). The 

passband width is from Fs/4 to Fs/2 Hz. 

The magnitude (gain) at normalised frequency 0 is 1 (i.e. 0 dB19) and the stopband frequency (when gain 

 

frequency is defined as the frequency when the gain drops 3 dB from maximum gain of 1, which is 0 dB. 

x[n]  x[n-1]  
 0.5 

So when energy is half, i.e. gain=(1/2)0.5=0.7071, we have 20log
10

(0.7071) 3 dB. From Figure 4.15, we 

can see that the 3 dB cut-off frequency (when gain=0.7071) is approximately  0.5 rad/sample or  

 

 

Similarly, a HPF can be designed using a difference filter: 
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Increasing the order of the simple filter 

n x + n x + n x 

Eq. (4.5) could be easily verified by replacing values for x n ]. For example, using x [1]=3, x [2]=2 and 

x 

For order M , we have 

M 
n (4.6) M 

As an example, for order M =3, we will have 

n n x + n x + n x + n x 

C n 
M M 

The magnitude response is given in Figure 4.19. 

4.4.1 

The order of the filter can be increased to obtain a smaller passband width and to obtain a frequency 

response closer to the ideal ‘square’ filter. The sum filter in (4.3) had an order of 1; if we cascaded another 

first order sum filter, we will have the block diagram shown in Figure 4.18 (we’ll drop the constants for 

simplicity of discussion): 

 
 

 

Figure 4.18: Magnitude response of two first order sum filters (effectively a second order sum filter). 

 

Solving for z[n] in Figure 4.18 will give 

z[n] = y[n] + y[n − 1] , 

= x[n] + x[n − 1] + x[n − 1] + x[n − 2], 

 

 

 
(4.5) 

 
 

two first order filters (i.e. y[2] and y[3]) will give the same result. 

 
It should be noted that z[n] in the example above will be defined only for n=3 onwards if x[1] is the 

starting point of the signal, i.e. for every order M, M initial data points will be lost in filtering. Likewise 

y[n] in (4.3) is defined only from y[2] onwards. 

 

 

 

(4.7) 
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= [ ] 2 [ − 1] [ − 2]. 

 

y( ) =   [ ]  3 [   − 2]   

    

 
    

 

 

 

For order , we have 

y( ) =  
r=0 

rx[ − r] where 
M 

Cr =
 ! 

. 
r!( − r) 

(4.6) 

As an example, for order =3, we will have 
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given by 

(4.8) 

Similarly for the HPF with order N we will have 

The passband is about 0.302  Fs 

 

 
 

Figure 4.19: Magnitude response of the third order sum filter. 

 

The passband is about 0.302   F   could be seen that with increasing order, the passband is 

becoming smaller without any change in stopband. Also, the response is becoming closer to the ideal 

‘square’. So, we can increase/decrease M depending on the requirements.      
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(4.8) 

Similarly for the HPF with order , we will have 

Challenge the way we run 

EXPERIENCE THE 
POWER OF FULL 
ENGAGEMENT… 

RUN FASTER. 
RUN 
LONGER.. 

RUN 

 

WWW.GAITEYE.COM 

http://www.gaiteye.com/


Biological Signal Analysis Digital Filtering 

68 

Download free eBooks at bookboon.com 

 

 

and the magnitude response as 

BPF design using sum and difference filter 

Similarly, a BPF can be designed using a combination of LPF and HPF. This BPF is known as sum 

and difference (SD) 

 

 

 

y(n) = 
N

 

r=0 
(−1)

r (NC
r
 x[n − r]). (4.10) 

 

4.4.2 

Similarly, a BPF can be designed using a combination of LPF and HPF. This BPF is known as sum 

and difference (SD) filter. Different orders, M and N can be chosen to obtain the required frequency 

response [1]: 

GM ,N ( f ) = (2 cosfT )
M 

2 sinfT 
N 

/ Gain
cf 

, (4.11) 

where Gain
cf 

is the gain at centre frequency given by 
 

 fcentre = 

f
s cos

−1 M − N 
 

 
 

 
(4.12) 

2 
 

M + N 
 .

 

  
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Figure 4.20: BPF design using SD filter. 

 
 

For example, with filter orders of M=28 and N=8 gives the centre frequency of 40 Hz when Fs=256 Hz. 

The approximate 3 dB bandwidth is from 32 to 48 Hz (rounded to the nearest integer) and the gain 

amplification at 40 Hz is approximately 47.21. Figure 4.20 shows this example using different filter orders 

but with similar centre frequency (which is dependent on ratio of M/N). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.21: BPF magnitude response for M=7, N=2 and M=28 and N=4 (note: ordinate shows gain as actual 

values and not as dB). 
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As another example, let us obtain the band pass FIR filter expression for orders, LPF, M =4 and HPF, 

N =1, i.e. obtain the band pass FIR equation that expresses n ] in terms of x n ] and delays of x n ]. Using 

(4.6), obtain n ] in term of x n ] and using (4.10), obtain n ] in terms n ]. Next, replace n ] in the 

latter expression to arrive at 

 

 
 

z[n] = x[n] + 3x[n − 1] + 2x[n − 2] − 2x[n − 3] − 3x[n − 4] − x[n − 5]. (4.13) 

 

4.5 FIR filter design using window method 

The SD filter that we studied in the previous section is simple to design but for practical purposes, we often 

need filters that can be tailored to suit our required specifications. Consider doing an inverse DFT of the 

ideal LPF shown in Figure 4.1 (a) to obtain what is known as the impulse response, which are basically the 

filter coefficients20. 

 
The impulse response is actually the sinc function given by 

 

h
LPF 

[n] = 
sin(2f

c
n) 

,
 

n 

 
−   n   

 
(4.14) 

 

It would be obvious that we will not be able to use h
LPF 

as the filter coefficients as the length is infinite. 

So we could use a rectangular window, w[n] to truncate the impulse response. However, by using a finite 

set of coefficients (i.e. impulse response), the shape of the magnitude response is changed with ripples 

showing up as in Figure 4.20. This is known as the Gibbs phenomenon – oscillatory behaviour in the 

magnitude responses caused by truncating the ideal impulse response function (i.e. the rectangular 

window has an abrupt transition to zero). Gibbs phenomenon can be reduced by 

 
• using a window that tapers smoothly at each end such as Hamming, Hanning, triangular etc 

(refer to Section 3.5 in the previous chapter); 

• providing a smooth transition from passband to stopband in the magnitude specifications. 
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Figure 4.21: Impulse response for LPF. 
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