

Al-Mustaqbal University Department Biomedical Engineering Class 3rd (Engineering Analysis)

Asst. lec. Eman Yasir

(Inverse Laplace Transform)

Inverse Laplace Transform

If the Laplace transform of a function F(t) is f(s), i.e. if $\{F(t)\} = f(s)$, then F(t) is called an inverse Laplace transform f(s) and it is symbolically expressed as follows:

$$F(t) = \mathcal{L}^{-1}\{f(s)\}$$

where

 \mathcal{L}^{-1} is called the inverse Laplace transformation operator.

Table of Laplace Transforms

f(t)	$F(s) = \mathcal{L}\{f\}(s)$
1	$\frac{1}{s}$, $s > 0$
e ^{at}	$\frac{1}{s-a}$, $s>0$
t ⁿ , n = 1,2,	$\frac{n!}{s^{n+1}}, s>0$
sin bt	$\frac{b}{s^2+b^2}, s>0$
cos bt	$\frac{s}{s^2+b^2}, s>0$
$e^{at}t^{n}$, n = 1,2,	$\frac{n!}{(s-a)^{n+1}}, s>a$
e ^{at} sin bt	$\frac{b}{(s-a)^2+b^2}, s>a$
e ^{at} cos bt	$\frac{s-a}{(s-a)^2+b^2}, s>a$

Al-Mustagbal University Department Biomedical Engineering

(Engineering Analysis) Asst. lec. Eman Yasir

(Inverse Laplace Transform)

Example

Find f(t) if

(a)
$$F(s) = \frac{5}{s+3},$$

(b)
$$F(s) = \frac{s+1}{s^2+1}$$
,

(a)
$$F(s) = \frac{5}{s+3}$$
, (b) $F(s) = \frac{s+1}{s^2+1}$, (c) $F(s) = \frac{1}{(s+25)^2}$,

(d)
$$F(s) = \frac{s+2}{(s+2)^2+1}$$
, (e) $F(s) = \frac{s}{(s-1)^2-4}$, (f) $F(s) = \frac{1}{s^2(s^2+1)}$,

(e)
$$F(s) = \frac{s}{(s-1)^2-4}$$

(f)
$$F(s) = \frac{1}{s^2(s^2+1)}$$
,

(g)
$$F(s) = \frac{4}{s^2 + 2s + 10}$$

Solution

(a)
$$f(t) = 5e^{-3t}$$

(b)
$$F(s) = \frac{s+1}{s^2+1} = \frac{s}{s^2+1} + \frac{1}{s^2+1} \implies f(t) = \cos(t) + \sin(t)$$

(c) Using the shifting property $\mathcal{L}\{e^{at}f(t)\}=F(s-a)$ then $\mathcal{L}^{-1}\{F(s-a)\}=e^{at}f(t)$.

Here, we have $F(s) = \frac{1}{s^2}$ with a = -25. Since, $\mathcal{L}^{-1}\left\{\frac{1}{s^2}\right\} = t$ then

$$\mathcal{L}^{-1}\left\{\frac{1}{\left(s+25\right)^{2}}\right\}=t\cdot e^{-25t}$$

(d) Here, we have a shifting of -2 with $F_1(s) = \frac{s}{s^2 + 1}$. So, $f_1(t) = \cos(t)$ and

$$\mathcal{L}^{-1}\left\{\frac{s+2}{(s+2)^2+1}\right\} = f(t) = \cos(t) \cdot e^{-2t}$$

Al-Mustaqbal University Department Biomedical Engineering Class 3rd

(Engineering Analysis) Asst. lec. Eman Yasir

(Inverse Laplace Transform)

(e)
$$F(s) = \frac{s}{(s-1)^2 - 4} = \frac{s-1+1}{(s-1)^2 - 4} = \frac{s-1}{(s-1)^2 - 4} + \frac{1}{(s-1)^2 - 4}$$

So, $f(t) = e^t \cosh(2t) + \frac{1}{2}e^t \sinh(2t)$

(f) We know that $\mathcal{L}^{-1}\left\{\frac{1}{s^2+1}\right\} = \sin(t)$ and using the property of division by s which

means an integration in time domain, we get

$$\mathcal{L}^{-1}\left\{\frac{1}{s}\cdot\frac{1}{s^2+1}\right\} = \int_0^t \sin(u)du = 1 - \cos(t)$$

Again using the same property we get

$$\mathcal{L}^{-1}\left\{\frac{1}{s^2} \cdot \frac{1}{s^2 + 1}\right\} = \int_0^t (1 - \cos(u)) du = t - \sin(t)$$

(g)
$$F(s) = \frac{4}{s^2 + 2s + 10} = \frac{4}{s^2 + 2s + 1 - 1 + 10} = \frac{4}{(s+1)^2 + 9}$$

This is $F_1(s) = \frac{4}{s^2 + 9}$ with a shifting of a = -1. So, $f_1(t) = \frac{4}{3}\sin(3t)$ and

$$f(t) = \frac{4}{3}e^{-t}\sin(3t)$$

Al-Mustaqbal University Department Biomedical Engineering Class 3rd

(Engineering Analysis) Asst. lec. Eman Yasir

(Inverse Laplace Transform)

Solution

$$\frac{3s+7}{(s+1)(s-3)} = \frac{A}{s+1} + \frac{B}{s-3}$$

$$\Rightarrow 3s+7=A(s-3)+B(s+1)$$

First Method

$$3s+7 = As-3A+Bs+B \implies A+B=3$$
$$\implies -3A+B=7$$

Solving these two equations we get A = -1 and B = 4

Second Method

$$3s+7 = A(s-3) + B(s+1)$$

At $s = -1$ we get $-3+7 = -4A \implies A = -1$
At $s = 3$ we get $9+7 = 4B \implies B = 4$

Third Method

$$A = \frac{3s+7}{(s-3)}\Big|_{s=-1} = \frac{3(-1)+7}{-1-3} = \frac{4}{-4} = -1$$

$$B = \frac{3s+7}{(s+1)}\Big|_{s=3} = \frac{3(3)+7}{3+1} = \frac{16}{4} = 4$$

$$F(s) = \frac{3s+7}{(s+1)(s-3)} = \frac{-1}{s+1} + \frac{4}{s-3}$$

$$f(t) = -e^{-t} + 4e^{3t}$$

Al-Mustaqbal University Department Biomedical Engineering Class 3rd

(Engineering Analysis) Asst. lec. Eman Yasir

(Inverse Laplace Transform)

Example

Find
$$f(t)$$
 if $F(s) = \frac{s-1}{(s+1)^3}$

Solution

$$\frac{s-1}{(s+1)^3} = \frac{A}{(s+1)} + \frac{B}{(s+1)^2} + \frac{C}{(s+1)^3}$$

$$C = s-1\Big|_{s=-1} = -2$$

$$B = \frac{1}{1!} \frac{d}{ds} (s-1)\Big|_{s=-1} = 1$$

$$A = \frac{1}{2!} \frac{d^2}{ds^2} (s-1)\Big|_{s=-1} = \frac{1}{2} \frac{d}{ds} (1)\Big|_{s=-1} = 0$$
So $F(s) = \frac{1}{(s+1)^2} - \frac{2}{(s+1)^3}$

$$\Rightarrow f(t) = e^{-t} (t-t^2)$$