

Subject: statistics for biomedical engineer (Lecturer (Dr.alaa mohammed Hussein wais)

1st term – Lect. (mean)

7.1 Relative frequency and percentage

frequency

- **1- Frequency:** It determines the number of observations falling into each category.
- **2- Relative frequency:** It determines the proportion of observation in the particular class relative to the total observations.

This **relative frequency** of a particular observation or class limit is found by dividing the frequency (\mathbf{F}) by the number of observations (\mathbf{N}): that is, ($\mathbf{F} \div \mathbf{N}$).

Relative frequency = frequency ÷ number of observations

- 3- Relative frequency distribution: is a tabular summary of a set of data showing the relative frequency for each class.
- 4- Percent frequency is the relative frequency multiplied by 100 The percentage frequency is found by multiplying each relative frequency value by 100. Thus:

Percentage frequency = relative frequency x $100 = f \div n \times 100$

Subject: statistics for biomedical engineer (Lecturer (Dr.alaa mohammed Hussein wais)

1st term – Lect. (mean)

Example1: Construct the Percentage frequency and relative frequency distribution for the following data:

62	58	58	52	48	53	54	63	69	63
57	56	46	48	53	56	57	59	58	53
52	56	57	52	52	53	54	58	61	63

Sol:

- 1.Largest value (XL) = 69, Lowest value (XS) = 46
- 2. Total Range (TR) = (69-46) + 1 = 24
- $3.K=1+3.322\log(30) = 5.9\sim6$ (Rounded off)
- 4. Class width (L) = 24/6 = 4

Use 46 (minimum value) as first lower limit. Add the class width of 4 to get the lower limit of the next class.

Upper limit = 46 + 4 - 1 = 50 - 1 = 49

Subject: statistics for biomedical engineer (Lecturer (Dr.alaa mohammed Hussein wais)

1st term – Lect. (mean)

Class Interval	Frequency (Fi)	Relative Frequency	Percentage Frequency	Midpoint (X)
46 – 49	3	3/30 = 0.1	3/30x100=10	47.5
50 – 53	8	8/30 = 0.27	8/30x100=27	51.5
54 – 57	8	8/30 = 0.27	8/30x100=27	55.5
58 – 61	6	6/30 = 0.2	6/30x100=20	59.5
62 – 65	4	4/30 = 0.13	4/30x100=13	63.5
66 – 69	1	1/30 = 0.03	1/30x100=3	67.5
Total	$\sum = 30$	1	\(\sum_{=} 100	

Cumulative frequency distribution table

A cumulative frequency distribution table is a more detailed table. It looks almost the same as a frequency distribution table but it has added columns that give the cumulative frequency and the cumulative percentage of the results, as well.

Example 1: Construct the Cumulative frequency distribution table for the following data:

62	58	58	52	48	53	54	63	69	63
57	56	46	48	53	56	57	59	58	53
52	56	57	52	52	53	54	58	61	63

Sol:

Subject: statistics for biomedical engineer (Lecturer (Dr.alaa mohammed Hussein wais)

1st term – Lect. (mean)

- 1.Largest value (XL) = 69, Lowest value (XS) = 46
- 2. Total Range (TR) = (69-46) + 1 = 24
- $3.K=1+3.322\log(30) = 5.9\sim6$ (Rounded off)
- 4. Class width (L) = 24/6 = 4

Use 46 (minimum value) as first lower limit. Add the class width of 4 to get the lower limit of the next class.

Upper limit =
$$46 + 4 - 1 = 50 - 1 = 49$$

Class Interval	Frequency (Fi)	Cumulative frequency	Cumulative percentage(%)
46 – 49	3	→ 3	3/30x100=10
50 – 53	8 🗲	→ 8+3 = 11	$11/30 \times 100 = 37$
54 – 57	8	→ 11+8=19	19/30x100= 63
58 – 61	6	→ 19+6=25	25/30x100= 83
62 – 65	4	→ 25+4=29	29/30x100= 97
66 – 69	1	→ 29+1=30	30/30x100= 100
Total	$\sum = 30$		

Subject: statistics for biomedical engineer (Lecturer (Dr.alaa mohammed Hussein wais)

1st term – Lect. (mean)

Tables for Qualitative Data

Ex: A sample of 10 students were examined by certain teacher and the results of examination was as below:

1. good

2. very good

3. good

4. excellent

5. poor

6. very good

7. good

8. poor

9. excellent

10. poor

Sol:

Results	Frequency	Relative Frequency	Percentage Frequency %	Cumulative Frequency	Cumulative Frequency %
Poor	3	0.3	30	3	30
Good	3	0.3	30	6	60
Very good	2	0.2	20	8	80

Excellent	2	0.2	20	10	100
Total	10		100		