

جامعة المستقبل كلية الهندسة والتقنيات الهندسية قسم هندسة تقنيات الأجهزة الطبية

Ddifferential Equation

A differential equation is an equation which contains one or more terms and the derivatives of one variable (i.e., dependent variable) with respect to the other variable (i.e., independent variable) dy/dx = f(x) Here "x" is an independent variable and "y" is a dependent variable.

Types of Differential Equations

- 1. Ordinary Differential Equations.
- 2. Partial Differential Equations.
- 3. Linear Differential Equations.
- 4. Nonlinear differential equations.
- 5. Homogeneous Differential Equations.
- 6. Nonhomogeneous Differential Equations.

Applications of Differential Equations

Differential Equations are used to calculate the movement or flow of electricity, motion of an object to and fro like a pendulum, to explain thermodynamics concepts. Also, in medical terms, they are used to check the growth of diseases in graphical representation.

Differential Equations

1. Definition of Differential Equations

Differential Equation: is any equation which contains one derivative or more. The derivative may be either ordinary derivative or partial derivative.

المعادلة التفاضلية: هي المعادلة التي تحتوي على مشتقة واحدة على الاقل او أكثر، وتكون المشتقة اما مشتقة اعتيادية او مشتقة جزئية.

$$\dot{y} + 4\dot{y} - 3y = 2x$$
 or $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} - 3y = 2x$

Solution of the Differential Equation is finding an equation without any derivatives, and when substituted in the differential equation achieved.

حل المعادلة التفاضلية هو إيجاد معادلة خالية من المشتقات وإذا عوضت في المعادلة التفاضلية تحققها.

1.1 Classification of Differential equation:

Differential equation divided into:

1) Ordinary Differential Equation: independent variable = 1 المعادلة التفاضلية الاعتيادية

Ordinary Differential Equation (ODE): is an equation containing one independent variable.

For Example:

$$y = x^2$$

$$\frac{dy}{dx} = 2x$$
 or $\dot{y} = 2x$ \rightarrow

$$y = f(x)$$

where:

y: is dependent variable متغير معتمد

x: is independent variable متغیر مستقل

2) Partial Differential Equation: independent variable > 1 المعادلة التفاضلية الجزئية

Partial Differential Equation (PDE): is an equation containing more than one independent variable.

For Example:

$$z = x^2 + y^2$$

$$\frac{dz}{dx} = 2x$$
 or $\dot{z} = 2x$ \rightarrow $z = f(x, y)$

$$\frac{dz}{dy} = 2y$$
 or $\dot{z} = 2y$ \rightarrow $z = f(x, y)$

where:

z: is dependent variable

x & *y*: is independent variable

1.2 Order of differential equation: رتبة المعادلة التفاضلية

The number of highest derivative in a differential equation. A differential equation of order 1 is called <u>First order</u>, order 2 is called <u>Second order</u> etc.

For Example:

$$\dot{y} + y = x$$
 First order

$$\dot{y} + 2\dot{y} - y = \sin x$$
 Second order

1.3 Degree of the differential equation: درجة المعادلة التفاضلية

The highest power which is raised to the highest-order derivative existed in differential equation.

For Example:

1)
$$\dot{\hat{y}} + 2\dot{y} - y = 0$$
 the degree is 1