

Al-Mustaqbal University Department Biomedical engineering Class second Subject Math. (Lecturer (Dr.alaa mohammed Hussein wais) 1st term – Lect. (Vector)

3.12 Directional derivatives

Suppose that the function f(x, y) is defined throughout a region R in the xy – plane, that $P_o(x_o, y_o)$ is a point in R and that $u = u_1i + u_2j$ is a unit vector. Thus the equations:

$$x = x_o + su_1$$
, $y = y_o + su_2$

Parameterize the line through P_o parallel to u, if the parameter s measures are length from P_o in the direction of u, we find the rate of change of f

 P_o in the direction of u by calculating $\frac{df}{ds}$ at P_o at

Gradient vector

$$f(x, y, z) P_o(x_o, y_o, z_o)$$

$$\nabla f = \frac{\partial f}{\partial x}i + \frac{\partial f}{\partial y}j + \frac{\partial f}{\partial z}k$$

Al-Mustaqbal University Department Biomedical engineering Class second Subject Math. (Lecturer (Dr.alaa mohammed Hussein wais) 1st term – Lect. (Vector)

elf).

nd *u* is *t* is:

$$(DuF)|p_{\circ} = \nabla f|p_{\circ} \cdot u$$

Which is the scalar product of the gradient of F at P_{\circ} and u

" $(\boldsymbol{DuF})|p_{\circ} \rightarrow$ The derivative of F at P_o in the direction of u"

Example: Find the direction derivative of the function

$$F(x,y,z)=x^2+y^2+z^2$$
 at point $p_o(1,1,1)$ in the direction of Vector $v=i+j+k$.

Solution //

$$(DuF)|p_{\circ} = \nabla f|p_{\circ} . u$$

$$\nabla f = \frac{\partial f}{\partial x}i + \frac{\partial f}{\partial y}j + \frac{\partial f}{\partial z}k = 2x i + 2y j + 2z k$$

Al-Mustaqbal University Department Biomedical engineering Class second Subject Math.

(Lecturer (Dr.alaa mohammed Hussein wais) 1st term – Lect. (Vector)

at point
$$p_o(1,1,1) \rightarrow \nabla f | p_o = 2i + 2j + 2k$$

$$\mathbf{u} = \frac{v}{|v|} = \frac{i+j+k}{\sqrt{1+1+1}} = \frac{i+j+k}{\sqrt{3}}$$

$$(DuF)|p_{\circ}=\nabla f|p_{\circ}.u=2i+2j+2k$$
. $\frac{i+j+k}{\sqrt{3}}=\frac{6}{\sqrt{3}}$

Example: find the derivative of $f(x, y) = xe^y + \cos(xy)$ at the point (2, 0) in the direction of v = 3i - 4j

Solution: the direction of v is the unit vector obtained by dividing v by its length:

$$u = \frac{v}{|v|}$$

$$|v| = \sqrt{(3)^2 + (-4)^2} = \sqrt{9 + 16} = \sqrt{25} = 5$$
$$u = \frac{3i - 4j}{5} = \frac{3}{5}i - \frac{4}{5}j$$

$$\nabla f = \frac{\partial f}{\partial x}\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j} = (e^y - y \sin xy)\mathbf{i} + (xe^y - x\sin xy)\mathbf{j}$$

at point
$$p_{\circ}(2,0) \rightarrow \nabla f | p_{\circ} = i + 2j$$

$$(DuF)|p_{\circ} = \nabla f|p_{\circ} \cdot u = i + 2j. \ \frac{3i-4j}{5} = \frac{-5}{5} = -1$$

Al-Mustagbal University Department Biomedical engineering Class second Subject Math.

(Lecturer (Dr.alaa mohammed Hussein wais) 1st term - Lect. (Vector)

point

$$\nabla f = \frac{\partial f}{\partial x}i + \frac{\partial f}{\partial z}j = (2y)i + (2x - 6y)j$$

$$at \ point \ p_{\circ}(5,5) \rightarrow \nabla f|p_{\circ} = 10i - 20j$$

$$(DuF)|p_{\circ} = \nabla f|p_{\circ} \cdot u = 10i - 20j. \ \frac{4i + 3j}{5} = \frac{-20}{5}$$

$$= -4$$

Exercises:

- 1. find the derivative of the function f(x, y, z) = xy + yz + zx, at the point $P_o(1,-1,2)$ in the direction of A=3i+6j-2k
- 2. find the derivative of the function $g(x, y, z) = 3e^x \cos yz$, at the point $P_0(0.0,0)$ in the direction of A = 2i + j - 2k