4. Voltage-Feedback Bias Circuit:

Fig. 9-7a shows a voltage-feedback bias circuit.

Analysis:

Load-Line Analysis:

Continuing with the approximation $I'_C = I_C$ will result in the same load line defined for the voltage-divider and emitter-biased configurations. The levels of I_{BQ} will be defined by the chosen base configuration.

Design:

For an optimum design:

$$V_{CEQ} = \frac{1}{2} V_{CC}$$

$$I_{CQ} = \frac{1}{2} I_{C(sat)} = \frac{V_{CC}}{2(R_C + R_E)}$$

$$V_E = \frac{1}{10} V_{CC}$$

$$R_B \le \beta(R_C + R_E)$$

[9-12]

Fig. 9-7

1.2 kΩ

-11-

10 µF

 $\beta = 45$

10 µF

 $\beta = 120$

Other Biasing Circuits:

Example 9-2: (*Negative Supply*)

Determine V_C and V_B for the circuit of Fig. 9-8.

Fig. 9-9

VEE = -20 V

Example 9-4: (Common-Base)

Determine V_{CB} and I_B for the common-base configuration of Fig. 9-10.

Solution:

Applying KVL to the input circuit: $-V_{EE} + I_E R_E + V_{BE} = 0$ $I_E = \frac{V_{EE} - V_{BE}}{R_E} = \frac{4 - 0.7}{1.2k} = 2.75 mA$ Applying KVL to the output circuit: $+V_{CB} + I_C R_C - V_{CC} = 0$ $V_{CB} = V_{CC} - I_C R_C$ with $I_C \cong I_E$ $V_{CB} = 10 - (2.75m)(2.4k) = 3.4V$ $I_B = \frac{I_C}{\beta} = \frac{2.75m}{60} = 45.8\mu A$

Fig. 9-10

Example 9-5: (Common-Collector)

Determine I_E and V_{CE} for the common-collector (emitter-follower) configuration of Fig. 9-11.

Example 9-6: (PNP Transistor)

Determine V_{CE} for the voltage-divider bias configuration of Fig. 9-12.

Solution: Testing: $\beta R_E \ge 10R_2$ $(120)(1.1k) \ge 10(10k)$ $132k\Omega \ge 100k\Omega(satisfied)$ $V_B = \frac{R_2 V_{CC}}{R_1 + R_2} = \frac{(10k)(-18)}{47k + 10k} = -3.16V$ $V_E = V_B - V_{BE} = -3.16 - (-0.7) = -2.46V$ $I_C = I_E = \frac{V_E}{R_E} = \frac{2.46}{1.1k} = 2.24mA$ $-I_E R_E + V_{CE} - I_C R_C + V_{CC} = 0$ (KVL) $V_{CE} = -V_{CC} + I_C (R_C + R_E)$ = -18 + (2.24m)(2.4k + 1.1k) = -10.16V

Fig. 9-12

Exercises:

- 1. For the fixed-biased configuration of Fig. 9-2a with the following parameters: $V_{CC} = +12 \text{ V}$, $\beta = 50$, $R_B = 240 \text{ k}\Omega$, and $R_C = 2.2 \text{ k}\Omega$, determine: I_{BQ} , I_{CQ} , V_{CEQ} , V_B , V_C , and V_{BC} .
- 2. Given the device characteristics of Fig. 9-13a, determine V_{CC} , R_B , and R_C for the fixed-bias configuration of Fig. 9-13b.

Fig. 9-13

- 3. For the emitter bias circuit of Fig. 9-4a with the following parameters: $V_{CC} = +20 \text{ V}, \beta = 50, R_B = 430 \text{ k}\Omega, R_C = 2 \text{ k}\Omega, \text{ and } R_E = 1 \text{ k}\Omega, \text{ determine:} I_B, I_C, V_{CE}, V_C, V_E, V_B \text{ and } V_{BC}.$
- 4. Design an emitter-stabilized circuit (Fig. 9-4a) at $I_{CQ} = 2$ mA. Use $V_{CC} = +20$ V and an npn transistor with $\beta = 150$.
- 5. Determine the dc bias voltage V_{CE} and the current I_C for the voltage-divider configuration of Fig. 9-6a with the following parameters: $V_{CC} = +18$ V, $\beta = 50$, $R_I = 82$ k Ω , $R_2 = 22$ k Ω , $R_C = 5.6$ k Ω , and $R_E = 1.2$ k Ω .
- 6. Design a beta-independent (voltage-divider) circuit to operate at $V_{CEQ} = 8$ V and $I_{CQ} = 10$ mA. Use a supply of $V_{CC} = +20$ V and an npn transistor with $\beta = 80$.
- 7. Determine the quiescent levels of I_{CQ} and V_{CEQ} for the voltage-feedback circuit of Fig. 9-7a with the following parameters: $V_{CC} = +10$ V, $\beta = 90$, $R_B = 250$ k Ω , $R_C = 4.7$ k Ω , and $R_E = 1.2$ k Ω .
- 8. Prove that $R_B \leq \beta(R_C + R_E)$ is the required condition for an optimum design of the voltage-feedback circuit.
- 9. Prove mathematically that I_{CQ} for the voltage-feedback bias circuit is approximately independent of the value of beta.
- 10. Fig. 9-14 shows a three-stage circuit with a V_{CC} supply of +20 V. GND stands for ground. If all transistors have a β of 100, what are the I_C and V_{CE} of each stage?

Fig. 9-14

Bias Stabilization

Basic Definitions:

The stability of system is a measure of sensitivity of a circuit to variations in its parameters. In any amplifier employing a transistor the *collector current* I_C is sensitive to each of the following parameters:

- I_{CO} (reverse saturation current): doubles in value for every 10°C increase in temperature.
- β (forward current gain): increase with increase in temperature.

Any or all of these factors can cause the bias point to drift from the design point of operation.

Stability Factors, S(Ico), S(VBE), and S(B):

A stability factor, *S*, is defined for each of the parameters affecting bias stability as listed below:

$$S(I_{CO}) = \frac{\Delta I_C}{\Delta I_{CO}} = \frac{\partial I_C}{\partial I_{CO}}\Big|_{V_{BE},\beta=const.}$$
[10.1a]
$$S(V_{BE}) = \frac{\Delta I_C}{\Delta V_{BE}} = \frac{\partial I_C}{\partial V_{BE}}\Big|_{I_{CO},\beta=const.}$$
[10.1b]
$$S(\beta) = \frac{\Delta I_C}{\Delta \beta} = \frac{\partial I_C}{\partial \beta}\Big|_{I_{CO},V_{BE}=const.}$$
[10.1c]

Generally, networks that are quite stable and relatively insensitive to temperature variations have low stability factors. In some ways it would seem more appropriate to consider the quantities defined by Eqs. [10.1a - 10.1c] to be sensitivity factors because: the higher the stability factor, the more sensitive the network to variations in that parameter.

The total effect on the collector current can be determined using the following equation:

$$\Delta I_C = S(I_{CO})\Delta I_{CO} + S(V_{BE})\Delta V_{BE} + S(\beta)\Delta\beta$$
[10.2]