

Class: 2nd Class

Subject: Mechanics of Materials

Lecturer: Dr. Ali K. Kareem

E-mail: ali.kamil.kareem@uomus.edu.iq

Lec7/Bending stress in the beam

Bending stress

It is described geometrically as stress consisting of two stresses, namely tension and compression.

Compression

Bending stress

The tensile or compressive stress resulting from the application of a non-axial force on a structural member.

Bending stress
Or
Non-axial stress

Normal stress
Or
Axial stress

Bending stress

$$\sigma_{max} = \frac{M C}{I_x}$$

M = moment of neutral axis in (N.m)

C = distance from N.A to outer fiber in (m)

 $I_x = moment \ of \ interia \ in \ (mm^4)$

Moment of inertia (lx)

$$I_x = I_C + Ad^2$$

A = Area of the cross-section(mm₂)

d = the distance from the center
of the shape area(m).

Pure bending:

Pure bending (Theory of simple bending) is a condition of stress where a bending moment is applied to a beam without the simultaneous presence of axial, shear, or torsional forces.

$$\sigma_t = \frac{(150x10^3x10^3)(250)}{2.0833x10^9} = 18Mpa$$

Q/ A rectangular steel beam, 50mm wide by 80mm deep, is loaded as shown in Figure below. Determine the magnitude and location of the maximum flexural stress (bending stress),

$$\frac{MC}{I} = \frac{M\left(\frac{h}{2}\right)}{\frac{bh^3}{12}}$$

$$\sigma = \frac{6 M}{bh^2}$$

$$\sigma = \frac{6(4000)x10^3}{(50)(80)^2} \left(\frac{N.mm}{mm.\ mm^2}\right)$$

$$\sigma = 75 Mpa$$

Q/ A wooden beam 150 mm wide by 300 mm deep is loaded shown in Figure as below. If the maximum flexural stress is 8 Mpa the maximum values of W and P that can be applied simultaneously.

$$\sigma = \frac{1}{I} = \frac{bh^{3}}{\frac{12}{12}} \qquad \sigma = \frac{bh^{2}}{bh^{2}}$$

$$M = \frac{\sigma bh^{2}}{6}$$

$$at x = 6m; \quad (M_{6} = 2W)$$

$$2W = \frac{(8x10^{6})(150x10^{-3})(300x10^{-3})}{6}$$

$$W = 9000 \text{ N/m}$$

$$\Delta t x = 3m; \quad (M_{3} = 3R_{1})$$

$$M = 3R_{1}$$

$$2W = 3R_{1}$$

$$2W = 3R_{1}$$

$$R_{1} = \frac{2(9000)}{3} = 6000 \text{ N}$$

$$G = \frac{bh^{2}}{h^{2}}$$

$$\delta R_{1} = \frac{bh^{2}}{h^{2}}$$

$$\delta R_{2} = 0$$

$$\delta R_{1} - 3P + 2W(1) = 0$$

$$\delta R_{2} - 3P + 2W(1) = 0$$

$$\delta R_{1} - 3P + 2W(1) = 0$$

$$\delta R_{2} - 3P + 2W(1) = 0$$

$$\delta R_{3} - 3R_{1} + 3P + 2W(1) = 0$$

$$\delta R_{3} - 3R_{1} + 3P + 2W(1) = 0$$

$$\delta R_{3} - 3R_{1} + 3P + 2W(1) = 0$$

$$\delta R_{3} - 3R_{1} + 3P + 2W(1) = 0$$

$$\delta R_{3} - 3R_{1} + 3P + 2W(1) = 0$$

$$\delta R_{3} - 3R_{1} + 3P + 2W(1) = 0$$

$$\delta R_{3} - 3R_{1} + 3P + 2W(1) = 0$$

$$\delta R_{3} - 3R_{1} + 3P + 2W(1) = 0$$

$$\delta R_{3} - 3R_{1} + 3P + 2W(1) = 0$$

$$\delta R_{3} - 3R_{1} + 3P + 2W(1) = 0$$

$$\delta R_{3} - 3R_{1} + 3P + 2W(1) = 0$$

$$\delta R_{3} - 3R_{1} + 3P + 2W(1) = 0$$

$$\delta R_{3} - 3R_{1} + 3P + 2W(1) = 0$$

$$\delta R_{3} - 3R_{1} + 3P + 2W(1) = 0$$

$$\delta R_{3} - 3R_{1} + 3P + 2W(1) = 0$$

$$\delta R_{3} - 3R_{1} + 3P + 2W(1) = 0$$

$$\delta R_{3} - 3R_{1} + 3P + 2W(1) = 0$$

$$\delta R_{3} - 3R_{1} + 3P + 2W(1) = 0$$

$$\delta R_{3} - 3R_{1} + 3P + 2W(1) = 0$$

$$\delta R_{3} - 3R_{1} + 3P + 2W(1) = 0$$

$$\delta R_{3} - 3R_{1} + 3P + 2W(1) = 0$$

$$\delta R_{3} - 3R_{1} + 3P + 2W(1) = 0$$

$$\delta R_{3} - 3R_{1} + 3P + 2W(1) = 0$$

$$\delta R_{3} - 3R_{1} + 3P + 2W(1) = 0$$

$$\delta R_{3} - 3R_{1} + 3P + 2W(1) = 0$$

$$\delta R_{3} - 3R_{1} + 3P + 2W(1) = 0$$

$$\delta R_{3} - 3R_{1} + 3P + 2W(1) = 0$$

$$\delta R_{3} - 3R_{1} + 3P + 2W(1) = 0$$

$$\delta R_{3} - 3R_{1} + 3P + 2W(1) = 0$$

$$\delta R_{3} - 3R_{1} + 3P + 2W(1) = 0$$

$$\delta R_{3} - 3R_{1} + 3P + 2W(1) = 0$$

$$\delta R_{3} - 3R_{1} + 3P + 2W(1) = 0$$

$$\delta R_{3} - 3R_{1} + 3P + 2W(1) = 0$$

$$\delta R_{3} - 3R_{1} + 3P + 2W(1) = 0$$

$$\delta R_{3} - 3R_{1} + 3P + 2W(1) = 0$$

$$\delta R_{3} - 3R_{1} + 3P + 2W(1) = 0$$

$$\delta R_{3} - 3R_{1} + 3P + 2W(1) = 0$$

$$\delta R_{$$

150 mm

W kN/m

Q/ Compute the maximum tensile and compressive stresses for simply supported beam, if the maximum bending moment (M_{max}=16.2kN.m),

