

كلية الهندسة والتقنيات الهندسية قسم تقنيات الحاسوب مادة الرياضيات الهندسية المرحلة الثانية - الكورس الاول

2: Sample spaces and events ... Axioms for probability and their consequences.

2: فضاء العينة والاحداث... فرضيات الاحتمالات.

Sample Spaces:

A sample space is the set of all possible outcomes of an experiment. We'll denote a sample space as Ω .

Examples:

- Coin flip: $\Omega = \{H, T\}$ H= Head T= Tail
- Roll a 6-sided die: Ω = {1, 2, 3, 4, 5, 6}
- Pick a ball from a bucket of red/black balls: $\Omega = \{R, B\}$

Sets: A set is a collection of unique objects.

Here "objects" can be concrete things (people in class), or abstract things (numbers, colors).

Examples:

 $A = \{3, 8, 31\}$

B = {apple, pear, orange, grape}

Not a valid set definition: $C = \{1, 2, 3, 4, 2\}$

- Order in a set does not matter! {1, 2, 3} = {3, 1, 2} = {1, 3, 2}
- When x is an element of A, we denote this by: $x \in A$.
- If x is not in a set A, we denote this as: $x \in A$.
- The "empty" or "null" set has no elements: Ø = { }

كلية الهندسة والتقنيات الهندسية قسم تقنيات الحاسوب مادة الرياضيات الهندسية المرحلة الثانية - الكورس الاول

Some Important Sets

• Integers: $Z = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$

• Natural Numbers: N = {0, 1, 2, 3, . . .}

• Real Numbers: R = "any number that can be written in decimal form"

$$5 \in R$$
, $17.42 \in R$, $\pi = 3.14159 ... \in R$

Building Sets Using Conditionals

- Alternate way to define natural numbers: $N = \{x \in Z : x \ge 0\}$
- Set of even integers: $\{x \in Z : x \text{ is divisible by 2}\}$
- Rationals: Q = { p/q : p, q ∈ Z, q 6= 0}

Subsets:

Let A is a set and also A is a subset of another set B if every element of A is also an element of B, and we denote this as $A \subseteq B$.

Examples:

- $\{1, 9\} \subseteq \{1, 3, 9, 11\}$
- $Q \subseteq R$
- {apple, pear}
 ⊈ {apple, orange, banana}
- $\emptyset \subseteq A$ for any set A

كلية الهندسة والتقنيات الهندسية قسم تقنيات الحاسوب مادة الرياضيات الهندسية المرحلة الثانية - الكورس الاول

Events:

An event is a subset of a sample space.

Examples:

You roll a die and get an even number:

$$\{2, 4, 6\} \subseteq \{1, 2, 3, 4, 5, 6\}$$

You flip a coin and it comes up "heads":

$$\{H\} \subseteq \{H, T\}$$

Your code takes longer than 5 seconds to run:

$$(5,\infty)\subseteq R$$

Set Operations: Union

The union of two sets A and B, denoted A U B is the set of all elements in either A or B (or both).

When A and B are events, A U B means that event A or event B happens (or both).

Example:

 $A = \{1, 3, 5\}$ "an odd roll"

 $B = \{1, 2, 3\}$ "a roll of 3 or less"

 $A \cup B = \{1, 2, 3, 5\}$

Set Operations: Intersection

The intersection of two sets A and B, denoted $A \cap B$ is the set of all elements in both A and B.

When A and B are events, $A \cap B$ means that both event A and event B happen.

كلية الهندسة والتقنيات الهندسية قسم تقنيات الحاسوب مادة الرياضيات الهندسية المرحلة الثانية - الكورس الاول

Example:

 $A = \{1, 3, 5\}$ "an odd roll"

B = {1, 2, 3} "a roll of 3 or less"

 $A \cap B = \{1, 3\}$

Note: If A \cap B = \emptyset , we say A and B are disjoint منفصله.

Set Operations: Complement:

The complement of a set $A \subseteq \Omega$, denoted A^c , is the set of all elements in $(\Omega = \text{Sample spaces})$ that are not in A.

When A is an event, A^c means that the event A does not happen.

Example:

 $A = \{1, 3, 5\}$ "an odd roll"

 $A^c = \{2, 4, 6\}$ "an even roll"

Set Operations: Difference:

The difference of a set $A \subseteq \Omega$ and a set $B \subseteq \Omega$, denoted A - B, is the set of all elements in Ω that are in A and are not in B.

Example:

$$A = \{3, 4, 5, 6\}$$

$$B = \{3, 5\}$$

$$A - B = \{4, 6\}$$

Note: $A - B = A \cap \mathbf{B}^c$

كلية الهندسة والتقنيات الهندسية قسم تقنيات الحاسوب مادة الرياضيات الهندسية المرحلة الثانية - الكورس الاول

DeMorgan's Law:

Complement of union or intersection:

$$(A \cup B)^c = A^c \cap B^c$$

$$(A \cap B)^c = A^c \cup B^c$$

H/W

Check whether the following statements are true or false.

(Hint: you might use Venn diagrams.)

- A B ⊆ A
- $(A B)^c = A^c \cup B$
- $A \cup B \subseteq B$
- $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$

Probability:

A probability function on a finite sample space Ω assigns every event $A \subseteq \Omega$ a number in [0, 1], such that

1.
$$P(\Omega) = 1$$

2.
$$P(A \cup B) = P(A) + P(B)$$
 when $A \cap B = \emptyset$

P(A) is the probability that event A occurs.

Equally Likely Outcomes

The number of elements in a set A is denoted |A|.

If Ω has a finite number of elements, and each is equally likely, then the probability function is given by $\underline{P(A)} = \underline{|A|/|\Omega|}$

Example: Rolling a 6-sided die

- $P(\{1\}) = 1/6$
- $P(\{1, 2, 3\}) = 1/2$

كلية الهندسة والتقنيات الهندسية قسم تقنيات الحاسوب مادة الرياضيات الهندسية المرحلة الثانية - الكورس الاول

Repeated Experiments

If we do two runs of an experiment with sample space Ω , then we get a new experiment with sample space

$$\Omega \times \Omega = \{(x, y) : x \in \Omega, y \in \Omega\}$$

The element $(x, y) \in \Omega \times \Omega$ is called an <u>ordered pair</u>.

Properties:

Order matters: $(1, 2) \neq (2, 1)$ Repeats are possible: $(1, 1) \in \mathbb{N} \times \mathbb{N}$

More Repeats

Repeating an experiment n times gives the sample space

$$Ωn = Ω × · · · × Ω (n times)$$
= {(x₁, x₂, . . . , x_n) : x_i ∈ Ω for all *i*}

The element (x_1, x_2, \ldots, x_n) is called an <u>**n-tuple**</u>.

If $|\Omega| = k$, then $|\Omega^n| = k^n$.

Probability Rules

• Complement of an event A:

$$P(A^c) = 1 - P(A)$$

• Union of two overlapping متداخلة events A ∩ B ≠ Ø:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$