

Al-Mustaqbal University

College of Engineering and Technology

Department of Biomedical Engineering

Stage: three

Signal Processing

2023-2024

Lecture (12): Z-Transform

digital filter (FIR)

Z-Transform

5.1 Definition of Z.T

The z-transform is a very important tool in describing and analyzing digital systems. It also offers the techniques for digital filter design and frequency analysis of digital signals. The z-transform of a *causal* sequence x(n), designated by X(z) or Z(x(n)), is defined as:

$$X(z) = Z(x(n)) = \sum_{n=0}^{\infty} x(n)z^{-n}$$

= $x(0)z^{-0} + x(1)z^{-1} + x(2)z^{-2} + \dots$ (5.1)

Where, z is the complex variable. Here, the summation taken from n = 0 to $n = \infty$ is according to the fact that for most situations, the digital signal x(n) is the *causal* sequence, that is, x(n) = 0 for $n \le 0$. For non-causal system, the summation starts at $n = -\infty$. Thus, the definition in Equation (5.1) is referred to as a **one-sided z-transform** or a **unilateral transform**. The region of convergence is defined based on the particular sequence x(n) being applied. The z-transforms for common sequences are summarized below:

Line 1	No. $x(n)$, $n \ge 0$	z-Transform $X(z)$	Region of Convergence
1	x(n)	$\sum_{n=0}^{\infty} x(n)z^{-n}$	
2	$\delta(n)$	1	z > 0
3	au(n)	$\frac{az}{z-1}$	z > 1
4	nu(n)	$\frac{z}{(z-1)^2}$	z > 1
5	$n^2u(n)$	$\frac{z(z+1)}{(z-1)^3}$	z > 1
6	$a^n u(n)$	$\frac{z}{z-a}$	z > a
7	$e^{-na}u(n)$	$\frac{z}{(z-e^{-a})}$	$ z >e^{-a}$
8	$na^nu(n)$	$\frac{az}{(z-a)^2}$	z > a
9	$\sin{(an)}u(n)$	$\frac{z\sin(a)}{z^2 - 2z\cos(a) + 1}$	z > 1
10	$\cos(an)u(n)$	$\frac{z[z - \cos(a)]}{z^2 - 2z\cos(a) + 1}$	z > 1
11	$a^n \sin(bn)u(n)$	$\frac{[a\sin(b)]z}{z^2 - [2a\cos(b)]z + a^2}$	z > a
12	$a^n \cos(bn)u(n)$	$\frac{z[z - a\cos(b)]}{z^2 - [2a\cos(b)]z + a^{-2}}$	z > a
13	$e^{-an}\sin(bn)u(n)$	$\frac{[e^{-a}\sin(b)]z}{z^2 - [2e^{-a}\cos(b)]z + e^{-2a}}$	$ z >e^{-a}$
14	$e^{-an}\cos{(bn)}u(n)$	$\frac{z[z - e^{-a}\cos(b)]}{z^2 - [2e^{-a}\cos(b)]z + e^{-2a}}$	$ z > e^{-a}$ $ z > e^{-a}$
15	$2 A P ^n \cos(n\theta + \phi)u(n)$ where P and A are complex constants	$\frac{Az}{z-P} + \frac{A^*z}{z-P^*}$	

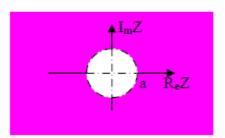
Example (1): Find Z.T including region of convergence of $x(n) = a^n u(n)$

Solution:

$$X(Z) = \sum_{n=0}^{\infty} a^n Z^{-n} = \sum_{n=0}^{\infty} (a Z^{-1})^n = \frac{1}{1 - a Z^{-1}} = \frac{Z}{Z - a} , \left| a Z^{-1} \right| \langle 1$$

Or
$$|Z| > |a|$$

The region of convergence (ROC) is <u>outside</u> the unit circle only.



5.2 Properties of Z.T:

<u>5.2.1</u> Linearity: The z-transform is a linear transformation, which implies

$$Z(a x_1(n) \pm b x_2(n)) = a X_1(Z) \pm b X_2(Z)$$
(5.2)

Where; *a* and *b* are constants. **ROC** = **ROC1** \cap **ROC2**

<u>5.2.2</u> Shift theorem (Delay) (without initial conditions): Given X(z), the z-transform of a sequence x(n), the z-transform of x(n-m), the time-shifted sequence, is given by;

$$Z\{x(n-m)\} = Z^{-m} X(Z)$$
(5.3)

5.2.3 Convolution: Given two sequences $x_1(n)$ and $x_2(n)$, their convolution can be determined as follows:

$$x(n) = x_1(n) \otimes x_2 = \sum_{k=-\infty}^{\infty} x_1(k) \ x_2(n-k) = \sum_{k=-\infty}^{\infty} x_1(n-k) \ x_2(k)$$
 (5.4)

Where ⊗ designates the linear convolution. In z-transform domain, we have

$$X(Z) = X_1(Z) \cdot X_2(Z)$$
 (5.5)

Basic Steps:

Compute z-Transform of each of the signals to convolve (time domain → z-domain):

$$X_{1}\left(z\right)=Z\left[x_{1}(n)\right]\ ,X_{2}\left(z\right)=Z\left[x_{2}\left(n\right)\right]$$

- 2. Multiply the two z-Transforms (in z-domain): $X(z) = X_1(z) X_2(z)$
- 3. Find the inverse z-Transform of the product (z-domain → time domain):

$$x(n) = z^{-1}[X(z)]$$

5.2.4 Multiplication by exponential:

$$Z\left\{\left.a^{n} \; x(n)\right\} = X(Z) \; \middle| \; \underset{Z \to \frac{Z}{a}}{\longrightarrow}$$
 (5.6.a)

$$Z\{e^{\pm an}x(n)\} = X(Z)\Big|_{Z \to e^{\mp a}Z}$$
(5.6.b)

5.2.5 Initial and final value theorems:

$$\lim_{n \to 0} x(n) = \lim_{Z \to \infty} X(Z) = x(0) \quad initial \ value \ theorem$$
 (5.7.a)

$$\lim_{n\to\infty} x(n) = \lim_{Z\to 1} Z^{-1} (Z-1) X(Z) \quad \text{final value theorem}$$
 (5.7.b)

5.2.6 Multiplication by n (Differentiation of X(z)):

$$Z\{n x(n)\} = -Z \frac{d}{dZ} X(Z)$$

$$(5.8)$$

5.3 Inverse of Z.T

$$x(n) = Z^{-1} \{X(Z)\}$$
(5.9)

The inverse z-transform may be obtained by the following methods:

- 1. Using properties.
- 2. Partial fraction (P.F) expansion method.
- 3. Power series expansion (the solution is obtained by applying long division because the denominator can't be analyzed. It is not accurate method compared with the above three methods).

Example (2): Find x(n) using partial fraction method, if:

$$X(z) = \frac{1}{(1 - z^{-1})(1 - 0.5z^{-1})}.$$

Solution:

Eliminating the negative power of z by multiplying the numerator and denominator by z^2 yields

$$X(z) = \frac{z^2}{z^2(1 - z^{-1})(1 - 0.5z^{-1})}.$$
$$= \frac{z^2}{(z - 1)(z - 0.5)}$$

Dividing both sides by z leads to

$$\frac{X(z)}{z} = \frac{z}{(z-1)(z-0.5)}.$$

Again, we write

$$\frac{X(z)}{z} = \frac{A}{(z-1)} + \frac{B}{(z-0.5)}.$$

$$A = (z-1)\frac{X(z)}{z}\Big|_{z=1} = \frac{z}{(z-0.5)}\Big|_{z=1} = 2,$$

$$B = (z-0.5)\frac{X(z)}{z}\Big|_{z=0.5} = \frac{z}{(z-1)}\Big|_{z=0.5} = -1.$$

Thus

$$\frac{X(z)}{z} = \frac{2}{(z-1)} + \frac{-1}{(z-0.5)}.$$

Multiplying z on both sides gives

$$X(z) = \frac{2z}{(z-1)} + \frac{-z}{(z-0.5)}.$$

$$x(n) = 2u(n) - (0.5)^n u(n).$$

Example (3): Find the inverse transform of X(z) using **partial fraction method**.

$$X(z) = \frac{z}{3z^2 - 4z + 1}$$

Solution:

Dividing both sides by z leads to

$$\frac{X(z)}{z} = \frac{1}{3z^2 - 4z + 1} = \frac{1}{3(z^2 - \frac{4}{3}z + \frac{1}{3})} = \frac{1}{3(z - 1)(z - \frac{1}{3})} = \frac{A}{z - 1} + \frac{B}{z - \frac{1}{3}}$$

$$A = \frac{X(z)}{z} (z - 1) \mid \rightarrow z = 1 \rightarrow \frac{1}{3(z - \frac{1}{3})}; \quad A = 1/2$$

$$B = \frac{X(z)}{z} (z - \frac{1}{3}) \mid \rightarrow z = \frac{1}{3} \rightarrow \frac{1}{3(z - 1)}, \quad B = -1/2$$

Therefore,

$$\frac{X(z)}{z} = \frac{1/2}{z-1} + \frac{-1/2}{z-\frac{1}{2}}$$

$$X(z) = \frac{\frac{1}{2}z}{z-1} + \frac{\left(-\frac{1}{2}\right)z}{z-\frac{1}{2}}$$

:
$$x(n) = \frac{1}{2} u(n) - \frac{1}{2} (\frac{1}{3})^n u(n)$$