Transport Phenomena
 Sheet No#2 Modeling Q¹/ Develop an equation for the distance traveled by a freely falling body in time T assuming the distance depends upon the weight of the body, the acceleration of gravity, and the time. Q²/ The Reynolds number (Re) is a function of density, viscosity, and velocity of a fluid and a characteristic length. Establish the Reynolds number relation by dimensional analysis. Q³/ Determine the dynamic pressure exerted by a flowing incompressible fluid on an immersed object, assuming the pressure is a function of the density and the velocity. Q⁴/ For an ideal liquid, express the flow Q through an orifice in terms of the density of the liquid, the diameter of the orifice, and the pressure difference. Q⁵/ Assuming the drag force exerted by a flowing fluid on a body is a function of the density, viscosity, and velocity of the fluid and a characteristic length of the body, develop a general equation. ## Table of dimension of several Quantities | | | | Solution: | | |----------------------------|--|---------------------------|---------------------|-----------------------| | | | | (a) | <i>(b)</i> | | | Quantity | Symbol | F- L - T | M- L - T | | (a) | Area A in ft ² or m ² | \boldsymbol{A} | L^2 | L^2 | | (b) | Volume v in ft^3 or m^3 | v | L^3 | L^3 | | (c) | Velocity V in ft/sec or m/s | V | LT^{-1} | $L T^{-1}$ | | (<i>d</i>) | Acceleration a or g in ft/sec ² or m/s ² | a, g | $L T^{-2}$ T^{-1} | $L T^{-1}$ $L T^{-2}$ | | (<i>e</i>) | Angular velocity ω in rad/sec | ω | T^{-1} | T^{-1} | | <i>(f)</i> | Force F in lb or N | $\boldsymbol{\mathit{F}}$ | \boldsymbol{F} | $M L T^{-2}$ | | (g) | Mass M in slugs or kg | M | FT^2L^{-1} | M | | (<i>h</i>) | Specific weight γ in lb/ft ³ or N/m ³ | γ | FL^{-3} | $M L^{-2} T^{-2}$ | | (<i>i</i>) | Density ρ in slugs/ft ³ or kg/m ³ | ρ | $F T^2 L^{-4}$ | | | (j) | Pressure p in lb/ft ² or Pa | p | FL^{-2} | | | (<i>k</i>) | Absolute viscosity μ in lb-sec/ft ² or N·s/m ² | μ | | $M L^{-1} T^{-1}$ | | (l) | Kinematic viscosity ν in ft ² /sec or m ² /s | ν | $L^2 T^{-1}$ | $L^2 T^{-1}$ | | (m) | Modulus of elasticity E in lb/ft ² or Pa | \boldsymbol{E} | FL^{-2} | $M L^{-1} T^{-2}$ | | (n) | Power P in ft-lb/sec or $N \cdot m/s$ | P | FLT^{-1} | $M L^2 T^{-3}$ | | (o) | Torque T in ft-lb or $N \cdot m$ | T | FL | $M L^2 T^{-2}$ | | (<i>p</i>) | Rate of flow Q in ft^3/sec or m^3/s | Q | $L^3 T^{-1}$ | L^3T^{-1} | | (<i>q</i>) | Shearing stress r in lb/ft ² or Pa | τ | FL^{-2} | $M L^{-1} T^{-2}$ | | (r) | Surface tension σ in lb/ft or N/m | σ | FL^{-1} | $M T^{-2}$ | | (s) | Weight W in lb or N | W | F | $M L T^{-2}$ | | (t) | Weight rate of flow W in lb/sec or N/s | W | $F T^{-1}$ | $M L T^{-3}$ |