Transport Phenomena
 Sheet No#2 Modeling

Q¹/ Develop an equation for the distance traveled by a freely falling body in time T assuming the distance depends upon the weight of the body, the acceleration of gravity, and the time.

Q²/ The Reynolds number (Re) is a function of density, viscosity, and velocity of a fluid and a characteristic length. Establish the Reynolds number relation by dimensional analysis.

Q³/ Determine the dynamic pressure exerted by a flowing incompressible fluid on an immersed object, assuming the pressure is a function of the density and the velocity.

Q⁴/ For an ideal liquid, express the flow Q through an orifice in terms of the density of the liquid, the diameter of the orifice, and the pressure difference.

Q⁵/ Assuming the drag force exerted by a flowing fluid on a body is a function of the density, viscosity, and velocity of the fluid and a characteristic length of the body, develop a general equation.

Table of dimension of several Quantities

			Solution:	
			(a)	<i>(b)</i>
	Quantity	Symbol	F- L - T	M- L - T
(a)	Area A in ft ² or m ²	\boldsymbol{A}	L^2	L^2
(b)	Volume v in ft^3 or m^3	v	L^3	L^3
(c)	Velocity V in ft/sec or m/s	V	LT^{-1}	$L T^{-1}$
(<i>d</i>)	Acceleration a or g in ft/sec ² or m/s ²	a, g	$L T^{-2}$ T^{-1}	$L T^{-1}$ $L T^{-2}$
(<i>e</i>)	Angular velocity ω in rad/sec	ω	T^{-1}	T^{-1}
<i>(f)</i>	Force F in lb or N	$\boldsymbol{\mathit{F}}$	\boldsymbol{F}	$M L T^{-2}$
(g)	Mass M in slugs or kg	M	FT^2L^{-1}	M
(<i>h</i>)	Specific weight γ in lb/ft ³ or N/m ³	γ	FL^{-3}	$M L^{-2} T^{-2}$
(<i>i</i>)	Density ρ in slugs/ft ³ or kg/m ³	ρ	$F T^2 L^{-4}$	
(j)	Pressure p in lb/ft ² or Pa	p	FL^{-2}	
(<i>k</i>)	Absolute viscosity μ in lb-sec/ft ² or N·s/m ²	μ		$M L^{-1} T^{-1}$
(l)	Kinematic viscosity ν in ft ² /sec or m ² /s	ν	$L^2 T^{-1}$	$L^2 T^{-1}$
(m)	Modulus of elasticity E in lb/ft ² or Pa	\boldsymbol{E}	FL^{-2}	$M L^{-1} T^{-2}$
(n)	Power P in ft-lb/sec or $N \cdot m/s$	P	FLT^{-1}	$M L^2 T^{-3}$
(o)	Torque T in ft-lb or $N \cdot m$	T	FL	$M L^2 T^{-2}$
(<i>p</i>)	Rate of flow Q in ft^3/sec or m^3/s	Q	$L^3 T^{-1}$	L^3T^{-1}
(<i>q</i>)	Shearing stress r in lb/ft ² or Pa	τ	FL^{-2}	$M L^{-1} T^{-2}$
(r)	Surface tension σ in lb/ft or N/m	σ	FL^{-1}	$M T^{-2}$
(s)	Weight W in lb or N	W	F	$M L T^{-2}$
(t)	Weight rate of flow W in lb/sec or N/s	W	$F T^{-1}$	$M L T^{-3}$