
Computer Application
(MATLAB)

(ماتلاب)تطبيقات الحاسبة
2024-2025

Lecture 6
by

Dr Murtada Dohan
murtada.dohan@uomus.edu.iq

mailto:murtada.dohan@uomus.edu.iq

Learning Objectives
• Understand how to use for loops to repeat operations in

MATLAB.
• Understand the purpose and structure of while loops in

MATLAB.
• Common Built-in Functions

Understanding for Loops
• Definition: A for loop repeats a block of code a specified number of

times.
• Usage: Ideal for iterating over arrays, performing calculations

repeatedly, and automating repetitive tasks.
• Basic Structure:

for index = start:step:end
 % Code to execute
end

Basic Syntax of a for Loop
•Structure:

for i = 1:5
 disp(i); % Displays values from 1 to 5
end

•Explanation:
• i = 1:5 sets the loop to run from 1 to 5, incrementing by 1 each

time.
• Inside the loop, disp(i) displays the current value of i.

Using Custom Step Sizes
•Syntax: Define step sizes by specifying start:step:end.
•Example:

for j = 1:2:10
 disp(j); % Displays odd numbers from 1 to 9
end

•Explanation: The loop starts at 1, increments by 2 each
time, and stops at 10.

Iterating Over Arrays
• Purpose: for loops are commonly used to access each element in

an array.
• Example:

A = [3, 6, 9, 12];
for k = 1:length(A)
 disp(A(k)); % Displays each element in A
end

• Explanation: The loop runs from 1 to length(A), displaying each
element in A sequentially.

Using Nested for Loops
• Definition: A for loop inside another for loop.
• Common Use: Useful for iterating over matrices and

multidimensional arrays.
• Example:

for i = 1:3
 for j = 1:3
 disp([i, j]); % Displays all combinations of i and j
 end
end

• Explanation: The outer loop runs for each row, while the inner loop
iterates through each column.

Example: Sum Array
•Problem: Write a for loop to calculate the sum of all

elements in an array.
•Solution:

A = [1, 2, 3, 4];
total = 0;
for i = 1:length(A)
 total = total + A(i);
end
disp(total); % Displays 10

Using break in a for Loop
•Purpose: break stops the loop when a condition is met.
•Example:

A = [3, 5, 8, 2];
for i = 1:length(A)
 if A(i) == 8
 disp('Found 8');
 break; % Exit loop once 8 is found
 end
end

• Explanation: The loop stops immediately when A(i) == 8.

Using continue to Skip Iterations
•Purpose: continue skips to the next iteration without

executing the remaining code in the loop.
•Example:

for i = 1:5
 if mod(i, 2) == 0
 continue; % Skip even numbers
 end
 disp(i); % Displays only odd numbers
end

• Explanation: The loop displays only odd numbers, as it skips even
iterations.

Example: For Loop

A = [1, 2, 3, 4];
total = 0;
for i = 1:length(A)
 total = total + A(i);
end
disp(total);

Example: For Loop

A = [3, 5, 2, 7];
total = 0;
for i = 1:length(A)
 total = total + A(i);
end
disp(total);

Memory

Example: For Loop

A = [3, 5, 2, 7];
total = 0;
for i = 1:length(A)
 total = total + A(i);
end
disp(total);

Memory

Example: For Loop

A = [3, 5, 2, 7]; ✓
total = 0;
for i = 1:length(A)
 total = total + A(i);
end
disp(total);

Memory

3 5 2 7A =

Example: For Loop

A = [3, 5, 2, 7]; ✓
total = 0; ✓
for i = 1:length(A)
 total = total + A(i);
end
disp(total);

Memory

3 5 2 7A =

total = 0

Example: For Loop

A = [3, 5, 2, 7]; ✓
total = 0; ✓
for i = 1:length(A)
 total = total + A(i);
end
disp(total);

Memory

3 5 2 7A =

total = 0

Example: For Loop

A = [3, 5, 2, 7]; ✓
total = 0; ✓
for i = 1:length(A) ➔ i =1 4
 total = total + A(i);
end
disp(total);

Memory

3 5 2 7A =

total = 0

i = 1

1 2 3 4

Example: For Loop

A = [3, 5, 2, 7]; ✓
total = 0; ✓
for i = 1:length(A) ➔ i =1 4
 total = total + A(i); ➔ 0 + 3
end
disp(total);

Memory

3 5 2 7A =

total = 0

i = 1

1 2 3 4

Example: For Loop

A = [3, 5, 2, 7]; ✓
total = 0; ✓
for i = 1:length(A) ➔ i =1 4
 total = total + A(i); ✓
end
disp(total);

Memory

3 5 2 7A =

total = 3

i = 1

1 2 3 4

Example: For Loop

A = [3, 5, 2, 7]; ✓
total = 0; ✓
for i = 1:length(A) ➔ i =1 4
 total = total + A(i); ✓
end ✓
disp(total);

Memory

3 5 2 7A =

total = 3

i = 2

1 2 3 4

Example: For Loop

A = [3, 5, 2, 7]; ✓
total = 0; ✓
for i = 1:length(A) ➔ i =1 4
 total = total + A(i); ➔ 3 + 5
end
disp(total);

Memory

3 5 2 7A =

total = 3

i = 2

1 2 3 4

Example: For Loop

A = [3, 5, 2, 7]; ✓
total = 0; ✓
for i = 1:length(A) ➔ i =1 4
 total = total + A(i); ✓
end
disp(total);

Memory

3 5 2 7A =

total = 8

i = 2

1 2 3 4

Example: For Loop

A = [3, 5, 2, 7]; ✓
total = 0; ✓
for i = 1:length(A) ➔ i =1 4
 total = total + A(i);
end
disp(total);

Memory

3 5 2 7A =

total = 8

i = 3

1 2 3 4

Example: For Loop

A = [3, 5, 2, 7]; ✓
total = 0; ✓
for i = 1:length(A) ➔ i =1 4
 total = total + A(i); ➔8+2
end
disp(total);

Memory

3 5 2 7A =

total = 8

i = 3

1 2 3 4

Example: For Loop

A = [3, 5, 2, 7]; ✓
total = 0; ✓
for i = 1:length(A) ➔ i =1 4
 total = total + A(i); ✓
end
disp(total);

Memory

3 5 2 7A =

total = 10

i = 3

1 2 3 4

Example: For Loop

A = [3, 5, 2, 7]; ✓
total = 0; ✓
for i = 1:length(A) ➔ i =1 4
 total = total + A(i);
end
disp(total);

Memory

3 5 2 7A =

total = 10

i = 4

1 2 3 4

Example: For Loop

A = [3, 5, 2, 7]; ✓
total = 0; ✓
for i = 1:length(A) ➔ i =1 4
 total = total + A(i); ➔ 10 +7
end
disp(total);

Memory

3 5 2 7A =

total = 10

i = 4

1 2 3 4

Example: For Loop

A = [3, 5, 2, 7]; ✓
total = 0; ✓
for i = 1:length(A) ➔ i =1 4
 total = total + A(i); ✓
end ✓
disp(total);

Memory

3 5 2 7A =

total = 17

i = 4

1 2 3 4

Example: For Loop

A = [3, 5, 2, 7]; ✓
total = 0; ✓
for i = 1:length(A) ➔ i =1 4
 total = total + A(i); ✓
end ✓
disp(total);

Memory

3 5 2 7A =

total = 17

i = 4

1 2 3 4

What is the output
of the following

line?

Understanding while Loops
•Definition: A while loop repeats a block of code as long as a

specified condition remains true.
•When to Use: Ideal when the number of iterations is not

known in advance but depends on a condition.
•Basic Structure:

while condition
 % Code to execute repeatedly
end

Basic while Loop Syntax
•Structure:

x = 0;
while x < 5
 disp(x);
 x = x + 1;
End

• Explanation:
• The loop will continue as long as x < 5.
• Each iteration increments x by 1 and displays its value.

Avoiding Infinite Loops
• Explanation: If the loop condition is always true, the loop will

run indefinitely.
• Solution: Ensure that a variable inside the loop changes so the

condition can eventually become false.
• Example of Infinite Loop:

x = 1;
while x > 0
 disp(x); % This will run indefinitely
end

• Fix: Increment or modify x within the loop to avoid infinite execution.

Using while Loops with Arrays
• Example: Finding the first negative element in an array.
• Solution:

A = [3, 5, -2, 8, -7];
i = 1;
while i <= length(A) && A(i) >= 0
 i = i + 1;
end
if i <= length(A)
 disp(['First negative element is ', num2str(A(i))]);
else
 disp('No negative elements found');
end

Using Nested while Loops
• Definition: A while loop inside another while loop, useful for multi-level conditions.
• Example: Filling a 3x3 matrix with increasing numbers until a limit.

limit = 9;
matrix = zeros(3);
i = 1;
j = 1;
count = 1;
while count <= limit
 while j <= 3
 matrix(i, j) = count;
 count = count + 1;
 j = j + 1;
 end
 j = 1; % Reset column
 i = i + 1; % Move to next row
end
disp(matrix);

Using break in a while Loop
• Purpose: break stops the loop immediately when a condition is

met.
• Example:

A = [3, 5, 7, -2, 4];
i = 1;
while i <= length(A)
 if A(i) < 0
 disp(['Negative number found: ', num2str(A(i))]);
 break; % Exit loop when a negative number is found
 end
 i = i + 1;
end

Built-in Functions for Arrays
• MATLAB provides several built-in functions for performing

operations on arrays.
• Benefits: Simplifies code and improves readability.
• Examples: sum, max, min, mean,…

array = [1, 2, 3, 4];
sum_array = sum(array);

Basic Matrix Function - sum
• Computes the sum of elements along a specified

dimension.
• Syntax: sum(A, dim)

• dim = 1: Sum along columns.
• dim = 2: Sum along rows.

• Examples:
A = [1, 2, 3; 4, 5, 6];
col_sum = sum(A, 1);
row_sum = sum(A, 2);

Basic Matrix Function - max and min
• max: Returns the largest element in an array or matrix.
• min: Returns the smallest element.
• Syntax: max(A, [], dim) and min(A, [], dim)
• Examples:

A = [1, 3, 5; 2, 4, 6];
max_val = max(A);
min_val = min(A);

Basic Matrix Function - mean and median
• mean: Calculates the average.
• median: Finds the middle value.
• Syntax: mean(A, dim) and median(A, dim)
• Examples:

A = [1, 3, 5; 2, 4, 6];
mean_val = mean(A);
median_val = median(A);

Basic Matrix Function - length and size
• length: Finds the longest dimension of an array.
• size: Returns the dimensions of a matrix.
• Examples:

A = [1, 3, 5; 2, 4, 6];
len = length(A);
[rows, cols] = size(A);

Review of Key Concepts
• Loop Structure: Use for to repeat a block of code.
• Step Sizes: Customize increments with start:step:end.
• Loop Structure: Use while to repeat code while a condition

is true.

Let’s try MATLAB
Launch MATLAB and work towards the exercises

	Default Section
	Slide 1: Computer Application (MATLAB)
	Slide 2: Learning Objectives
	Slide 3: Understanding for Loops
	Slide 4: Basic Syntax of a for Loop
	Slide 5: Using Custom Step Sizes
	Slide 6: Iterating Over Arrays
	Slide 7: Using Nested for Loops
	Slide 8: Example: Sum Array
	Slide 9: Using break in a for Loop
	Slide 10: Using continue to Skip Iterations
	Slide 11: Example: For Loop
	Slide 12: Example: For Loop
	Slide 13: Example: For Loop
	Slide 14: Example: For Loop
	Slide 15: Example: For Loop
	Slide 16: Example: For Loop
	Slide 17: Example: For Loop
	Slide 18: Example: For Loop
	Slide 19: Example: For Loop
	Slide 20: Example: For Loop
	Slide 21: Example: For Loop
	Slide 22: Example: For Loop
	Slide 23: Example: For Loop
	Slide 24: Example: For Loop
	Slide 25: Example: For Loop
	Slide 26: Example: For Loop
	Slide 27: Example: For Loop
	Slide 28: Example: For Loop
	Slide 29: Example: For Loop

	New
	Slide 30: Understanding while Loops
	Slide 31: Basic while Loop Syntax
	Slide 32: Avoiding Infinite Loops
	Slide 33: Using while Loops with Arrays
	Slide 34: Using Nested while Loops
	Slide 35: Using break in a while Loop
	Slide 36: Built-in Functions for Arrays
	Slide 37: Basic Matrix Function - sum
	Slide 38: Basic Matrix Function - max and min
	Slide 39: Basic Matrix Function - mean and median
	Slide 40: Basic Matrix Function - length and size

	End body
	Slide 41: Review of Key Concepts
	Slide 42: Let’s try MATLAB

