
Computer Application
(MATLAB)

(ماتلاب)تطبيقات الحاسبة
2024-2025

Lecture 5
by

Dr Murtada Dohan
murtada.dohan@uomus.edu.iq

mailto:murtada.dohan@uomus.edu.iq

Learning Objectives
• Understand how to use the mod function for modular

arithmetic
• Uses of isempty to check for empty arrays or variables.
• Understand how to use for loops to repeat operations in

MATLAB.
• Understand the purpose and structure of while loops in

MATLAB.

The Structure of if-else in MATLAB
• Basic syntax:

if condition
 % Code to execute if condition is true

elseif other_condition
% Code to execute if other_condition is true

else
% Code to execute if none of the conditions are true

End
• Note: Always close the if-else statement with end.

Example: if-elseif-else Statement
• Example to check if a number is positive, negative, or zero:

x = 0;
if x > 0
 disp('x is positive');
elseif x < 0
 disp('x is negative');
else
 disp('x is zero');
end

• Explanation:
• MATLAB evaluates each condition in order until one is true. If none are true, else executes.

Using Logical Operators in Conditions
• Logical Operators allow combining multiple conditions:

• &&: Logical AND (both conditions must be true)
• ||: Logical OR (at least one condition must be true)
• ~: Logical NOT (inverts true to false and vice versa)

• Example:
a = 5;
b = 10;
if a > 0 && b > 0
 disp('Both a and b are positive');
end

Nested if-else Statements
• What is Nesting?

• Placing one if-else statement inside another for complex conditions.
• Example:

x = 10;
if x > 0
 if x > 5
 disp('x is positive and greater than 5');
 else
 disp('x is positive but 5 or less');
 end
end

Common Mistakes to Avoid
• Forgetting to use end to close if-else blocks.
• Incorrectly using = instead of == for equality check.
• Overusing nested if-else statements when simpler logic would

suffice.
• Mixing up logical operators (e.g., && and ||).

if with Entire Arrays
• MATLAB evaluates conditions in if statements as true if all

elements of an array meet the condition.
• Example:

A = [1, 2, 3];
if all(A > 0)
 disp('All elements are positive’);
end

• Note: If any element does not satisfy the condition, if will
consider the entire condition as false.

Using all and any Functions with Arrays
• all(array): Returns true if all elements of array are true.
• any(array): Returns true if at least one element of array is true.
• Examples:

A = [1, -3, 5];
if any(A < 0)
 disp('There are negative elements’);
end
if all(A > 0)
 disp('All elements are positive');
else
 disp('Not all elements are positive');
end

Applying Element-wise Condition
• Element-wise conditions allow applying logical tests to each

element in an array.
• Syntax: Use element-wise operators with arrays (&, |, ~).
• Example:

A = [5, -3, 8];
B = A > 0; % Element-wise comparison
disp(B); % Output: [1 0 1]

Conditional Indexing with Arrays
• You can use logical conditions to select elements from an array.
• Example:

A = [1, -2, 3, -4, 5];
posElements = A(A > 0); % Select positive elements
disp(posElements); % Output: [1 3 5]

Combining Multiple Conditions on Arrays
• Use logical operators to combine conditions for element-wise

evaluations.
• Example:

A = [10, 15, 20, 25, 30];
selectedElements = A(A > 10 & A < 25); % Elements between 10 and 25
disp(selectedElements); % Output: [15 20]

Using Nested if Statements with Arrays
• Use nested if statements for multi-step checks on arrays.
• Example:

A = [4, 9, 16, 25];
if all(A > 0)
 if any(sqrt(A) == 5)
 disp('Array contains an element whose square root is 5');
 else
 disp('No element has a square root of 5');
 end
end

The mod Function
• Purpose: Calculates the remainder of a division operation.
• Syntax:

result = mod(a, b);

• Parameters:
• a: Dividend
• b: Divisor

• Example:
mod(10, 3) % Returns 1 (remainder of 10/3)

Common Uses of the mod Function
• Even or Odd Check:
• To check if a number is even:

mod(n, 2) == 0
• Example:

n = 5;
if mod(n, 2) == 0
 disp('n is even');
else
 disp('n is odd');
end

Practical Examples of mod
• Example 1: Find numbers divisible by 3 in a vector.

A = [1, 2, 3, 4, 5, 6];
divisibleBy3 = A(mod(A, 3) == 0); % Returns [3 6]

• Example 2: Display every third element in a vector:
A = [10, 20, 30, 40, 50, 60];
for i = 1:length(A)
 if mod(i, 3) == 0
 disp(A(i));
 end
end

The isempty Function
• Purpose: Checks if a variable or array is empty.
• Syntax:

result = isempty(variable);
• Returns: true if variable is empty, false otherwise.
• Example:

B = [];
isempty(B) % Returns true

Common Uses of isempty
• Check if Arrays Are Empty:

• Use in conditional statements to avoid errors in code execution.
• Validation Before Operations:

• Ensures variables have data before performing calculations.
• Example:

values = [];
if isempty(values)
 disp('No values to process');
else
 % Process values
end

Understanding for Loops
• Definition: A for loop repeats a block of code a specified number of

times.
• Usage: Ideal for iterating over arrays, performing calculations

repeatedly, and automating repetitive tasks.
• Basic Structure:

for index = start:step:end
 % Code to execute
end

Basic Syntax of a for Loop
•Structure:

for i = 1:5
 disp(i); % Displays values from 1 to 5
end

•Explanation:
• i = 1:5 sets the loop to run from 1 to 5, incrementing by 1 each

time.
• Inside the loop, disp(i) displays the current value of i.

Using Custom Step Sizes
•Syntax: Define step sizes by specifying start:step:end.
•Example:

for j = 1:2:10
 disp(j); % Displays odd numbers from 1 to 9
end

•Explanation: The loop starts at 1, increments by 2 each
time, and stops at 10.

Iterating Over Arrays
• Purpose: for loops are commonly used to access each element in

an array.
• Example:

A = [3, 6, 9, 12];
for k = 1:length(A)
 disp(A(k)); % Displays each element in A
end

• Explanation: The loop runs from 1 to length(A), displaying each
element in A sequentially.

Using Nested for Loops
• Definition: A for loop inside another for loop.
• Common Use: Useful for iterating over matrices and

multidimensional arrays.
• Example:

for i = 1:3
 for j = 1:3
 disp([i, j]); % Displays all combinations of i and j
 end
end

• Explanation: The outer loop runs for each row, while the inner loop
iterates through each column.

Example: Sum Array
•Problem: Write a for loop to calculate the sum of all

elements in an array.
•Solution:

A = [1, 2, 3, 4];
total = 0;
for i = 1:length(A)
 total = total + A(i);
end
disp(total); % Displays 10

Using break in a for Loop
•Purpose: break stops the loop when a condition is met.
•Example:

A = [3, 5, 8, 2];
for i = 1:length(A)
 if A(i) == 8
 disp('Found 8');
 break; % Exit loop once 8 is found
 end
end

• Explanation: The loop stops immediately when A(i) == 8.

Using continue to Skip Iterations
•Purpose: continue skips to the next iteration without

executing the remaining code in the loop.
•Example:

for i = 1:5
 if mod(i, 2) == 0
 continue; % Skip even numbers
 end
 disp(i); % Displays only odd numbers
end

• Explanation: The loop displays only odd numbers, as it skips even
iterations.

Understanding while Loops
•Definition: A while loop repeats a block of code as long as a

specified condition remains true.
•When to Use: Ideal when the number of iterations is not

known in advance but depends on a condition.
•Basic Structure:

while condition
 % Code to execute repeatedly
end

Basic while Loop Syntax
•Structure:

x = 0;
while x < 5
 disp(x);
 x = x + 1;
End

• Explanation:
• The loop will continue as long as x < 5.
• Each iteration increments x by 1 and displays its value.

Avoiding Infinite Loops
• Explanation: If the loop condition is always true, the loop will

run indefinitely.
• Solution: Ensure that a variable inside the loop changes so the

condition can eventually become false.
• Example of Infinite Loop:

x = 1;
while x > 0
 disp(x); % This will run indefinitely
end

• Fix: Increment or modify x within the loop to avoid infinite execution.

Using while Loops with Arrays
• Example: Finding the first negative element in an array.
• Solution:

A = [3, 5, -2, 8, -7];
i = 1;
while i <= length(A) && A(i) >= 0
 i = i + 1;
end
if i <= length(A)
 disp(['First negative element is ', num2str(A(i))]);
else
 disp('No negative elements found');
end

Using Nested while Loops
• Definition: A while loop inside another while loop, useful for multi-level conditions.
• Example: Filling a 3x3 matrix with increasing numbers until a limit.

limit = 9;
matrix = zeros(3);
i = 1;
j = 1;
count = 1;
while count <= limit
 while j <= 3
 matrix(i, j) = count;
 count = count + 1;
 j = j + 1;
 end
 j = 1; % Reset column
 i = i + 1; % Move to next row
end
disp(matrix);

Using break in a while Loop
• Purpose: break stops the loop immediately when a condition is

met.
• Example:

A = [3, 5, 7, -2, 4];
i = 1;
while i <= length(A)
 if A(i) < 0
 disp(['Negative number found: ', num2str(A(i))]);
 break; % Exit loop when a negative number is found
 end
 i = i + 1;
end

Review of Key Concepts
• mod Function:Useful for finding remainders, checking

divisibility, and periodic checks.
• isempty Function: Helps check if arrays or variables are

empty, which is useful for validation and preventing errors.
• Loop Structure: Use for to repeat a block of code.
• Step Sizes: Customize increments with start:step:end.
• Loop Control: Use break to exit early and continue to skip

iterations.
• Loop Structure: Use while to repeat code while a condition

is true.

Practice Exercise
• Task 1: Create a for loop to display the square of numbers

from 1 to 10.
• Task 2: Create a nested while loop to print the multiplication

table up to 5x5.
• Task 3: Using break, stop a loop once it finds a value greater

than 50 in an array.

Exercises Submission
• All exercises need to be submitted by Monday 11 Nov 23:59.

• Submit your answers via: https://forms.gle/zwmVsHVJziQECg949

https://forms.gle/zwmVsHVJziQECg949

Let’s try MATLAB
Launch MATLAB and work towards the exercises

	Default Section
	Slide 1: Computer Application (MATLAB)
	Slide 2: Learning Objectives
	Slide 3: The Structure of if-else in MATLAB
	Slide 4: Example: if-elseif-else Statement
	Slide 5: Using Logical Operators in Conditions
	Slide 6: Nested if-else Statements
	Slide 7: Common Mistakes to Avoid
	Slide 8: if with Entire Arrays
	Slide 9: Using all and any Functions with Arrays
	Slide 10: Applying Element-wise Condition
	Slide 11: Conditional Indexing with Arrays
	Slide 12: Combining Multiple Conditions on Arrays
	Slide 13: Using Nested if Statements with Arrays

	New Slides
	Slide 14: The mod Function
	Slide 15: Common Uses of the mod Function
	Slide 16: Practical Examples of mod
	Slide 17: The isempty Function
	Slide 18: Common Uses of isempty
	Slide 19: Understanding for Loops
	Slide 20: Basic Syntax of a for Loop
	Slide 21: Using Custom Step Sizes
	Slide 22: Iterating Over Arrays
	Slide 23: Using Nested for Loops
	Slide 24: Example: Sum Array
	Slide 25: Using break in a for Loop
	Slide 26: Using continue to Skip Iterations
	Slide 27: Understanding while Loops
	Slide 28: Basic while Loop Syntax
	Slide 29: Avoiding Infinite Loops
	Slide 30: Using while Loops with Arrays
	Slide 31: Using Nested while Loops
	Slide 32: Using break in a while Loop

	End body
	Slide 33: Review of Key Concepts
	Slide 34: Practice Exercise
	Slide 35: Exercises Submission
	Slide 36: Let’s try MATLAB

