R & ™
AL MUSTAQBAL UNIVERSITY

Discrete Mathematics

Lecture 6

Sets and set operations: cont.

Functions.
By

Asst. Lect. Ali Al-Khawaja



Sets - review

A subset of B:

— A is a subset of B if all elements in A are also in B.
Proper subset:

— A is a proper subset of B, if A is a subset of Band A #B
A power set:

— The power set of A is a set of all subsets of A
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Sets - review

» Cardinality of a set A:

— The number of elements of in the set
 An n-tuple

— An ordered collection of n elements
* Cartesian product of A and B

— A set of all pairs such that the first element is in A and
the second in B

CS 441 Discrete mathematics for CS




Set operations

Set union:
« A=1{1,2,3,6} B=1{24,69}
- AUB=1{1,23,469}

Set intersection:
« A=1{1,2,3,6} B=1{2,4,6,9}
c AnB=1{2,6}

Set difference:

« A=1{123,6} B=1{2,4,6,9}
« A-B=1{1,3}

« B-A=1{4,9}
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Complement of a set

Definition: Let U be the universal set: the set of all objects under
the consideration.

Definition: The complement of the set A, denoted by R, is the
complement of A with respect to U.

e Alternate: A={x|x ¢ A}

Example: U={1,2,3,4,5,6,7,8} A={1,3,5,7}
« A=1{2,4,68}
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Set identities

Set Identities (analogous to logical equivalences)
* Identity
- AV =A
— ANU=A
* Domination
- AYU=U
- ANG=9
* Idempotent
— AUA=A
—ANA=A
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Set identities

Double complement
A=A
Commutative
— AuB=BUA
— AnB=BnNA
Associative
— AuBuC)=(AuB)UC
— An(BNC)=(AnB)NnC
Distributive
— AuBC)=(Au B)n(Au C)
— An(BuC)= (AMB) U(ANC)
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 DeMorgan
— (An B) =
- (AuB)=
 Absorbtion Laws
-~ Auvu (AnB)=A
-~ An(A uB)=A
* Complement Laws
~AUA=U
~AnA=

> | 3> |

Set identities

| |

J
M
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Generalized unions and itersections

Definition: The union of a collection of sets 1s the set that
contains those elements that are members of at least one set
in the collection.

U4 ={4uv4,0..04}
i=1

Example:
« Letd={1,2,...,1} 1=12,..n

L ]
n

U 4, =1{1,2,..., n}
i=1
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Generalized unions and intersections

Definition: The intersection of a collection of sets is the set that
contains those elements that are members of all sets in the
collection.

4 ={4n4,n.n4,}

i=1

Example:

o Letd,={12,..i} i=12,..n

n

mAI.={l}
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Computer representation of sets

* How to represent sets in the computer?
* One solution: Data structures like a list
* A better solution:

* Assign a bit in a bit string to each element in the universal set
and set the bit to 1 1f the element 1s present otherwise use 0

Example:
All possible elements: U={12 3 4 5}
* Assume A={2,5}
— Computer representation: A = 01001
* Assume B={1,5}
— Computer representation: B = 10001
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Computer representation of sets

Example:
« A=01001
« B=10001

* The union is modeled with a bitwise or

« AvB=11001

* The intersection is modeled with a bitwise and

« A AB=00001

* The complement is modeled with a bitwise negation
A =10110
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Functions
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Functions

* Definition: Let A and B be two sets. A function from A to B,
denoted f: A — B, is an assignment of exactly one element of
B to each element of A. We write f(a) = b to denote the
assignment of b to an element a of A by the function f.

A f:A—>B B




Functions

* Definition: Let A and B be two sets. A function from A to B,
denoted f: A — B, is an assignment of exactly one element of
B to each element of A. We write f(a) =b to denote the
assignment of b to an element a of A by the function f.

A f:A—>B B

Not allowed !!!




Representing functions

Representations of functions:

1. Explicitly state the assignments in between elements of the
two sets

2. Compactly by a formula. (using ‘standard’ functions)

Examplel:
e LetA=1{1,2,3} and B = {a,b,c}
e Assume fis defined as:
e l—>c¢
2 —>a
e3¢
* Is fa function ?

* Yes. since f(1)=c, f(2)=a, f(3)=c. each element of A 1s assigned
an element from B




Representing functions

Representations of functions:

1. Explicitly state the assignments in between elements of the
two sets

2. Compactly by a formula. (using ‘standard’ functions)
Example 2:
« LetA=1{1,2,3} and B = {a,b,c}
* Assume g is defined as
*l—>c¢
*1—>b
e2—>a
*3 ¢
* Is g a function?
* No. g(1) =1s assigned both ¢ and b.




Representing functions

Representations of functions:

1. Explicitly state the assignments in between elements of the
two sets

2. Compactly by a formula. (using ‘standard’ functions)
Example 3:
« A=1{0,1,2,3,4,5,6,7,8,9}, B={0,1,2}
* Define h: A — B as:
* h(x) =x mod 3.
* (the result 1s the remainder after the division by 3)

» Assignments:
c 020 320
¢« 12 1 421

222




Important sets

Definitions: Let f be a function from A to B.

* We say that A 1s the domain of f and B 1s the codomain of f.

e Iff(a) =D, b is the image of a and a is a pre-image of b.

* The range of f is the set of all images of elements of A. Also, if
f 1s a function from A to B, we say {f maps A to B.

Example: Let A= {1,2,3} and B = {a,b,c}

e Assume fisdefinedas:1 —>¢,2 —>a,3 —>c¢

* What is the image of 1?

e 1>c¢ c 1s the image of 1
* What 1s the pre-image of a?
e 2—>a 2 1s a pre-image of a.

* Domamoftf ? {1,2,3}
* Codomain of f? {a,b,c}
« Rangeoff? {ac}




Image of a subset

Definition: Let f be a function from set A to set B and let S be a
subset of A. The image of S is a subset of B that consists of the
images of the elements of S. We denote the image of S by (S),

so that f(S)= { f(s) |s € S }.

A f:ADB B

Example:
« LetA={1,23} andB={ab,c}andf:1 >c,2>a,3 —>c
 LetS={1,3} then image f(S)=7?




Image of a subset

Definition: Let f be a function from set A to set B and let S be a
subset of A. The image of S is a subset of B that consists of the
images of the elements of S. We denote the image of S by {(S),

so that f(S)= { f(s)[s € S }.

A f:ADB B

Example:
« LetA={1,23}andB={abc}andf:1 >c,2 >a,3 —>c
 LetS={1,3} then image f(S) = {c}.




Injective function

Definition: A function f is said to be one-to-one, or injective, if
and only if f(x) = f(y) implies x =y for all x, y in the domain of
f. A function is said to be an injection if it is one-to-one.

Alternate: A function is one-to-one if and only if f(x) # {(y),
whenever x #y. This 1s the contrapositive of the definition.

A f:A2>B B A f:A->B B

Not injective Injective function




Injective functions

Example 1: Let A= {1,2,3} and B = {a,b,c}
* Define fas

-l —>c

—2—>a

—3->cC

« Is fone to one? No, it 1s not one-to-one since f(1) = f(3) = ¢, and
1 #3.

Example 2: Let g : Z —> Z, where g(x) =2x - 1.

« Is g 1s one-to-one (why?)

* Yes.

* Suppose g(a) =g(b),1.e.,2a-1=2b-1=>2a=2b
h =>a=b.




Surjective function

Definition: A function f from A to B 1s called onto, or surjective,
if and only if for every b € B there is an element a € A such that
f(a) =b.

Alternative: all co-domain elements are covered




Surjective functions

Example 1: Let A= {1,2,3} and B= {a,b,c}
— Define f as
cl—>c
«2—>a
*3->c¢
* [s fan onto?
* No. fis not onto, since b € B has no pre-image.
Example 2: A = {0,1,2,3,4,5,6,7,8,9}, B={0,1,2}
— Define h: A — B as h(x) = x mod 3.
* Is h an onto function?

* Yes. h 1s onto since a pre-image of 0 1s 6, a pre-image of 1 1s 4, a
pre-image of 2 1s 8.




Bijective functions

Definition: A function f is called a bijection if it is both one-to-
one and onto.

A fADB B




Bijective functions

Example 1:
« LetA={1,2,3} and B ={a,b,c}
— Define f as
*l—>c
e2—>a
*3->b
» Is fisabijection? Yes. It is both one-to-one and onto.

 Note: Let f be a function from a set A to itself, where A is finite.
f 1s one-to-one if and only if f 1s onto.

e This is not true for A an infinite set. Define f: Z — Z, where
f(z) =2 * z. fis one-to-one but not onto (3 has no pre-image).




Bijective functions

Example 2:
e Define g : W —»> W (whole numbers), where
g(n) = [n/2] (floor function).
« 0> [0/2]=[0]=0
e 1> [12]= [1/2]=0
2> [22]1=[1]1=1
3> |3/2]= [3/2] =1

* Is g abyjection?
— No. g 1s onto but not 1-1 (g(0) = g(1) =0 however 0 # 1.




Any
guestions ??
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