

Discrete Mathematics

Lecture 6

Sets and set operations: cont.

Functions.

Asst. Lect. Ali Al-Khawaja

Sets - review

- A subset of B:
 - A is a subset of B if all elements in A are also in B.
- Proper subset:
 - A is a proper subset of B, if A is a subset of B and $A \neq B$
- A power set:
 - The power set of A is a set of all subsets of A

Sets - review

- Cardinality of a set A:
 - The number of elements of in the set
- An n-tuple
 - An ordered collection of n elements
- Cartesian product of A and B
 - A set of all pairs such that the first element is in A and the second in B

Set operations

Set union:

- $A = \{1,2,3,6\}$ $B = \{2,4,6,9\}$
- $A \cup B = \{1,2,3,4,6,9\}$

Set intersection:

- $A = \{1,2,3,6\}$ $B = \{2,4,6,9\}$
- $A \cap B = \{2, 6\}$

Set difference:

- $A = \{1,2,3,6\}$ $B = \{2,4,6,9\}$
- $A B = \{1, 3\}$
- $B A = \{4, 9\}$

Complement of a set

<u>Definition</u>: Let U be the **universal set**: the set of all objects under the consideration.

<u>Definition:</u> The **complement of the set A**, denoted by A, is the complement of A with respect to U.

• Alternate: $\overline{A} = \{ x \mid x \notin A \}$

Example: $U=\{1,2,3,4,5,6,7,8\}$ A = $\{1,3,5,7\}$

•
$$\overline{A} = \{2,4,6,8\}$$

Set identities

Set Identities (analogous to logical equivalences)

- Identity
 - $-A \cup \emptyset = A$
 - $-A \cap U = A$
- Domination
 - $-A \cup U = U$
 - $-A\cap\varnothing=\varnothing$
- Idempotent
 - $-A \cup A = A$
 - $-A \cap A = A$

Set identities

Double complement

$$-\overline{\overline{A}} = A$$

Commutative

$$-A \cup B = B \cup A$$

$$-A \cap B = B \cap A$$

Associative

$$-A \cup (B \cup C) = (A \cup B) \cup C$$

$$-A \cap (B \cap C) = (A \cap B) \cap C$$

Distributive

$$- A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$-A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Set identities

DeMorgan

$$- \underline{(A \cap B)} = \underline{A} \cup \underline{B}$$
$$- \underline{(A \cup B)} = \underline{A} \cap \underline{B}$$

Absorbtion Laws

$$-A \cup (A \cap B) = A$$

$$-A \cap (A \cup B) = A$$

Complement Laws

$$-A \cup \overline{A} = U$$

$$-A \cap \overline{A} = \emptyset$$

Generalized unions and itersections

<u>Definition</u>: The <u>union of a collection of sets</u> is the set that contains those elements that are members of at least one set in the collection.

$$\bigcup_{i=1}^{n} A_{i} = \{A_{1} \cup A_{2} \cup ... \cup A_{n}\}\$$

Example:

- Let $A_i = \{1, 2, ..., i\}$ i = 1, 2, ..., n
- •

$$\bigcup_{i=1}^{n} A_{i} = \{1, 2, ..., n\}$$

Generalized unions and intersections

<u>Definition</u>: The intersection of a collection of sets is the set that contains those elements that are members of all sets in the collection.

$$\bigcap_{i=1}^{n} A_i = \{A_1 \cap A_2 \cap \dots \cap A_n\}$$

Example:

• Let $A_i = \{1,2,...,i\}$ i =1,2,...,n

$$\bigcap_{i=1}^{n} A_i = \{ 1 \}$$

Computer representation of sets

- How to represent sets in the computer?
- One solution: Data structures like a list
- A better solution:
- Assign a bit in a bit string to each element in the universal set and set the bit to 1 if the element is present otherwise use 0

Example:

All possible elements: U={1 2 3 4 5}

- Assume A={2,5}
 - Computer representation: A = 01001
- Assume B={1,5}
 - Computer representation: B = 10001

Computer representation of sets

Example:

- A = 01001
- B = 10001
- The union is modeled with a bitwise or
- $A \lor B = 11001$
- The intersection is modeled with a bitwise and
- $A \wedge B = 00001$
- The complement is modeled with a bitwise negation
- A = 10110

Functions

Definition: Let A and B be two sets. A function from A to B, denoted f: A → B, is an assignment of exactly one element of B to each element of A. We write f(a) = b to denote the assignment of b to an element a of A by the function f.

Functions

Definition: Let A and B be two sets. A function from A to B, denoted f: A → B, is an assignment of exactly one element of B to each element of A. We write f(a) = b to denote the assignment of b to an element a of A by the function f.

Representing functions

Representations of functions:

- 1. Explicitly state the assignments in between elements of the two sets
- 2. Compactly by a formula. (using 'standard' functions)

Example1:

- Let $A = \{1,2,3\}$ and $B = \{a,b,c\}$
- Assume f is defined as:
 - $1 \rightarrow c$
 - $2 \rightarrow a$
 - $3 \rightarrow c$
- Is f a function?
- Yes. since f(1)=c, f(2)=a, f(3)=c. each element of A is assigned an element from B

Representing functions

Representations of functions:

- 1. Explicitly state the assignments in between elements of the two sets
- 2. Compactly by a formula. (using 'standard' functions)

Example 2:

- Let $A = \{1,2,3\}$ and $B = \{a,b,c\}$
- Assume g is defined as
 - $1 \rightarrow c$
 - $1 \rightarrow b$
 - $2 \rightarrow a$
 - $3 \rightarrow c$
- Is g a function?
- No. g(1) = is assigned both c and b.

Representing functions

Representations of functions:

- 1. Explicitly state the assignments in between elements of the two sets
- 2. Compactly by a formula. (using 'standard' functions)

Example 3:

- $A = \{0,1,2,3,4,5,6,7,8,9\}, B = \{0,1,2\}$
- Define h: $A \rightarrow B$ as:
 - $h(x) = x \mod 3$.
 - (the result is the remainder after the division by 3)
- Assignments:
- $0 \rightarrow 0$
- 1> 1
- $2 \rightarrow 2$

- $3 \rightarrow 0$
- $4 \rightarrow 1$
- • •

Important sets

Definitions: Let f be a function from A to B.

- We say that A is the **domain** of f and B is the **codomain** of f.
- If f(a) = b, b is the image of a and a is a pre-image of b.
- The range of f is the set of all images of elements of A. Also, if f is a function from A to B, we say f maps A to B.

Example: Let $A = \{1,2,3\}$ and $B = \{a,b,c\}$

- Assume f is defined as: $1 \rightarrow c$, $2 \rightarrow a$, $3 \rightarrow c$
- What is the image of 1?
- $1 \rightarrow c$ c is the image of 1
- What is the pre-image of a?
- $2 \rightarrow a$ 2 is <u>a</u> pre-image of a.
- Domain of f ? $\{1,2,3\}$
- Codomain of f? {a,b,c}
- Range of f? {a,c}

Image of a subset

<u>Definition</u>: Let f be a function from set A to set B and let S be a subset of A. The image of S is a subset of B that consists of the images of the elements of S. We denote the image of S by f(S), so that $f(S) = \{ f(s) | s \in S \}$.

Example:

- Let $A = \{1,2,3\}$ and $B = \{a,b,c\}$ and $f: 1 \to c, 2 \to a, 3 \to c$
- Let $S = \{1,3\}$ then image f(S) = ?

Image of a subset

<u>Definition</u>: Let f be a function from set A to set B and let S be a subset of A. The image of S is a subset of B that consists of the images of the elements of S. We denote the image of S by f(S), so that $f(S) = \{ f(s) | s \in S \}$.

Example:

- Let A = $\{1,2,3\}$ and B = $\{a,b,c\}$ and f: $1 \to c$, $2 \to a$, $3 \to c$
- Let $S = \{1,3\}$ then image $f(S) = \{c\}$.

Injective function

<u>Definition</u>: A function f is said to be **one-to-one**, **or injective**, if and only if f(x) = f(y) implies x = y for all x, y in the domain of f. A function is said to be an **injection if it is one-to-one**.

Alternate: A function is one-to-one if and only if $f(x) \neq f(y)$, whenever $x \neq y$. This is the contrapositive of the definition.

Not injective

Injective function

Injective functions

Example 1: Let
$$A = \{1,2,3\}$$
 and $B = \{a,b,c\}$

- Define f as
 - $-1 \rightarrow c$
 - $-2 \rightarrow a$
 - $-3 \rightarrow c$
- Is f one to one? No, it is not one-to-one since f(1) = f(3) = c, and 1 ≠ 3.

Example 2: Let $g: Z \to Z$, where g(x) = 2x - 1.

- Is g is one-to-one (why?)
- Yes.
- Suppose g(a) = g(b), i.e., 2a 1 = 2b 1 => 2a = 2b $\Rightarrow a = b$

Surjective function

<u>Definition</u>: A function f from A to B is called <u>onto</u>, or <u>surjective</u>, if and only if for every $b \in B$ there is an element $a \in A$ such that f(a) = b.

Alternative: all co-domain elements are covered

Surjective functions

Example 1: Let
$$A = \{1,2,3\}$$
 and $B = \{a,b,c\}$

- Define f as
 - $1 \rightarrow c$
 - $2 \rightarrow a$
 - $3 \rightarrow c$
- Is f an onto?
- No. f is not onto, since $b \in B$ has no pre-image.

Example 2:
$$A = \{0,1,2,3,4,5,6,7,8,9\}, B = \{0,1,2\}$$

- Define h: A \rightarrow B as h(x) = x mod 3.
- Is h an onto function?
- Yes. h is onto since a pre-image of 0 is 6, a pre-image of 1 is 4, a pre-image of 2 is 8.

Bijective functions

<u>Definition</u>: A function f is called a bijection if it is both one-to-one and onto.

Bijective functions

Example 1:

- Let $A = \{1,2,3\}$ and $B = \{a,b,c\}$
 - Define f as
 - $1 \rightarrow c$
 - $2 \rightarrow a$
 - $3 \rightarrow b$
- Is f is a bijection? Yes. It is both one-to-one and onto.
- **Note:** Let f be a function from a set A to itself, where A is finite. f is one-to-one if and only if f is onto.
- This is not true for A an infinite set. Define $f: Z \to Z$, where f(z) = 2 * z. f is one-to-one but not onto (3 has no pre-image).

Bijective functions

Example 2:

- Define $g: W \to W$ (whole numbers), where g(n) = [n/2] (floor function).
 - $0 \rightarrow [0/2] = [0] = 0$
 - $1 \rightarrow [1/2] = [1/2] = 0$
 - $2 \rightarrow [2/2] = [1] = 1$
 - $3 \rightarrow [3/2] = [3/2] = 1$
- ..
- Is g a bijection?
 - No. g is onto but not 1-1 (g(0) = g(1) = 0 however 0 ≠ 1.

Any questions??