

Quantum Mechanics in Medicine

Presented by

Lec. Dr. Sarah Mahdi Obaid

Department of Medical Physics,
Al-Mustaqbal University,
Babil, Iraq

Email: sarah.mahdi@uomus.edu.iq
Third-year students

The Properties of Operators

1- linear operator

i.
$$\hat{A}(\psi_1 + \psi_2) = \hat{A}\psi_1 + \hat{A}\psi_2$$

ii.
$$\hat{A}(a\psi) = a\hat{A}\psi$$
 a is constant

2- Commutation

$$\hat{C} = [\hat{A}, \hat{B}] = \hat{A}\hat{B} - \hat{B}\hat{A}$$

If the operator $\widehat{C} = 0$ or $[\widehat{A}, \widehat{B}] = 0$ then \widehat{C} is called Commutator operator, and \widehat{A}, \widehat{B} are called Commute operators

If
$$\hat{C} \neq 0 \implies [\hat{A}, \hat{B}] \neq 0$$

$$\hat{A}\hat{B} - \hat{B}\hat{A} \neq 0$$

$$\hat{A}\hat{B} \neq \hat{B}\hat{A}$$
 Not commutator operator

3- Unit operator

If the operator $\hat{C} = 1$ then \hat{C} is called Unit operator.

Example 8: Prove that the operator $\hat{C} = \left[\frac{\partial}{\partial x}, x\right]$ is Unit operator.

Solution:

If the operator $\hat{C} = 1$ then \hat{C} is called Unit operator

$$\hat{C} = [\hat{A}, \hat{B}]$$

$$=\hat{A}\hat{B}-\hat{B}\hat{A}$$

$$\hat{C} = \left[\frac{\partial}{\partial x}, x\right] = \frac{\partial}{\partial x}x - x\frac{\partial}{\partial x}$$

$$\hat{C}\psi(x) = \left\{\frac{\partial}{\partial x}x - x\frac{\partial}{\partial x}\right\}\psi(x)$$

$$= \frac{\partial}{\partial x} x(\psi(x)) - x \frac{\partial}{\partial x} (\psi(x))$$

$$= \psi(x) + x \frac{\partial \psi(x)}{\partial x} - x \frac{\partial \psi(x)}{\partial x}$$

$$\hat{C}\psi(x) = \psi(x)$$

$$\hat{C} = 1$$

H.W.

Prove that
$$\hat{C} = [x, \frac{\partial}{\partial x}] = -1$$

Example: Show that $[\hat{x}, \hat{p}_x] = i\hbar$

Solution:

$$\hat{c} = [\hat{x}, \hat{p}_x]$$

$$\hat{c} = \hat{x} \, \hat{p}_x - \hat{p}_x \hat{x}$$

$$\hat{c} = \hat{x} \, (-i\hbar \frac{\partial}{\partial x}) + i\hbar \frac{\partial}{\partial x} (\hat{x})$$

$$\hat{c} \psi(x) = \left\{ \hat{x} (-i\hbar \frac{\partial}{\partial x}) + i\hbar \frac{\partial}{\partial x} (\hat{x}) \right\} \psi(x)$$

$$\hat{c} \psi(x) = \hat{x} (-i\hbar \frac{\partial \psi(x)}{\partial x}) + i\hbar \frac{\partial}{\partial x} \hat{x} \psi(x)$$

$$\hat{c} \psi(x) = x \left(-i\hbar \frac{\partial \psi(x)}{\partial x} \right) + i\hbar \frac{\partial}{\partial x} (x\psi(x))$$

$$\hat{c} \psi(x) = -i\hbar x \frac{\partial \psi(x)}{\partial x} + i\hbar \psi(x) + i\hbar x \frac{\partial \psi(x)}{\partial x}$$

$$\hat{c} \psi(x) = i\hbar \psi(x)$$

 $i\hbar$ is the eigen value to the operator \hat{c}

Example 10: Show that $[\widehat{H}, \widehat{x}] = \frac{-i\hbar}{m} \widehat{p}_x$

$$[\hat{H}, \hat{x}] = \hat{H}\hat{x} - \hat{x}\hat{H}$$
 Where $\hat{H} = \frac{-\hbar^2}{2m}\nabla^2 + V(x, y, z)$ and

$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

$$[\hat{H}, \hat{x}]\psi = (\hat{H}\hat{x} - \hat{x}\hat{H})\psi$$

$$\begin{split} & \left[\hat{H}, \hat{x} \right] \psi = \left\{ \left(\frac{-\hbar^2}{2m} \nabla^2 + V(x, y, z) \right) x - x \left(\frac{-\hbar^2}{2m} \nabla^2 + V(x, y, z) \right) \right\} \psi \\ & = -\frac{\hbar^2}{2m} \nabla^2 x \psi + V(x, y, z) x \psi + x \frac{\hbar^2}{2m} \nabla^2 \psi - x V(x, y, z) \psi \\ & = -\frac{\hbar^2}{2m} \nabla^2 x \psi + x \frac{\hbar^2}{2m} \nabla^2 \psi \end{split}$$

By using,

$$\nabla = \hat{\imath} \frac{\partial}{\partial x} + \hat{\jmath} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z}$$

$$\nabla^2 x \psi = \nabla \cdot (\nabla x \psi) = \nabla \cdot (x \nabla \psi + \hat{\imath} \psi) = x \nabla^2 \psi + \hat{\imath} \frac{\partial \psi}{\partial x} + \hat{\imath} \frac{\partial \psi}{\partial x} = x \nabla^2 \psi + \hat{\imath} 2 \frac{\partial \psi}{\partial x}$$

$$[\widehat{H},\widehat{x}]\psi = \frac{\hbar^2}{2m} \left(-x \nabla^2 \psi - 2 \frac{\partial \psi}{\partial x} + x \nabla^2 \psi \right)$$

$$\left[\widehat{H},\widehat{x}\right] = -\frac{\hbar^2}{m}\frac{\partial\psi}{\partial x} = \frac{-i\hbar}{m}\left(-i\hbar\frac{\partial\psi}{\partial x}\right) = \frac{-i\hbar}{m}\widehat{p}_x$$

4- Variance

The deviation in the measured of the operator \hat{A} from its expected value $\langle A \rangle$

$$\Delta A = \sqrt{\langle (A - \langle A \rangle)^2 \rangle}$$

Prove that
$$\Delta A = \sqrt{\langle (A - \langle A \rangle)^2 \rangle} = \sqrt{\langle A^2 \rangle - \langle A \rangle^2}$$

$$(\Delta A)^{2} = \langle (A - \langle A \rangle)^{2} \rangle = \int \psi^{*} (A - \langle A \rangle)^{2} \psi \, dr$$

$$= \int \psi^{*} (A^{2} - 2A\langle A \rangle + \langle A \rangle^{2}) \psi \, dr$$

$$= \int \psi^{*} A^{2} \psi \, dr - \int \psi^{*} 2A\langle A \rangle \psi \, dr + \int \psi^{*} \langle A \rangle^{2} \psi \, dr$$

$$(\Delta A)^{2} = \langle A^{2} \rangle - 2\langle A \rangle \langle A \rangle + \langle A \rangle^{2} = \langle A^{2} \rangle - 2\langle A \rangle^{2} + \langle A \rangle^{2}$$

$$(\Delta A)^{2} = \langle A^{2} \rangle - \langle A \rangle^{2}$$
So that $\Delta A = \sqrt{\langle A^{2} \rangle - \langle A \rangle^{2}}$

1- The variance in position

$$(\Delta x)^2 = \langle x^2 \rangle - \langle x \rangle^2$$

$$\langle x^2 \rangle = \int \psi^* \, \hat{x}^2 \psi \, dx$$

$$\langle x \rangle^2 = (\int \psi^* \hat{x} \ \psi \ dx)^2$$

2- The variance in momentum

$$(\Delta p_x)^2 = \langle p_x^2 \rangle - \langle p_x \rangle^2$$

$$\langle p_x^2 \rangle = \int \psi^* p_x^2 \psi \, dx$$

$$\langle p_x \rangle^2 = (\int \psi^* p_x \psi \, dx)^2$$

Or

$$\Delta x = \langle (x - \langle x \rangle)^2 \rangle^{1/2}, \, \Delta p = \langle (p - \langle p \rangle)^2 \rangle^{1/2}$$

Example 11: Consider a particle of mass m, in the quantum state $\psi(x,t) = Ae^{-a(mx^2-it)/\hbar}$

Where a, A are constant. Prove that, $\Delta x \Delta p_x \ge \frac{\hbar}{2}$

Solution:

First, Normalize the wave function,

$$\int_{-\infty}^{\infty} \psi^*(x,t) \, \psi(x,t) \, dx = 1$$

$$\int_{-\infty}^{\infty} \left(A^* e^{-a(mx^2 + it)/\hbar} \right) \left(A e^{-a(mx^2 - it)/\hbar} \right) dx = 1$$

$$|A|^2 \int_{-\infty}^{\infty} \left(e^{\frac{-2amx^2}{\hbar}} \right) dx = 2|A|^2 \int_{0}^{\infty} \left(e^{\frac{-2amx^2}{\hbar}} \right) dx = 1$$

Let
$$\alpha = \frac{2am}{\hbar}$$

$$2|A|^2 \int_0^\infty (e^{-\alpha x^2}) dx = 1$$

Usefull integral

$$\int_{0}^{\infty} x^{n} e^{-\alpha x^{2}} dx = \frac{1}{2 \alpha^{\frac{n+1}{2}}} \Gamma\left(\frac{n+1}{2}\right)$$

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

$$\therefore \int_0^\infty \left(e^{-\alpha x^2}\right) dx = \frac{1}{2} \sqrt{\frac{\pi}{\alpha}}$$

Then

$$|A|^2 \sqrt{\frac{\pi}{\alpha}} = 1$$

$$|A|^2 = \sqrt{\frac{\alpha}{\pi}}$$
 and the normalize constant is $|A| = \left(\frac{2am}{\pi\hbar}\right)^{\frac{1}{4}}$

$$\langle x \rangle = \int_{-\infty}^{\infty} \psi^*(x,t) \hat{x} \; \psi(x,t) \; dx = \int_{-\infty}^{\infty} \left(|A| e^{-a(mx^2+it)/\hbar} \right) x \left(|A| e^{-a(mx^2-it)/\hbar} \right) dx$$

$$\langle x \rangle = |A|^2 \int_{-\infty}^{\infty} \left(e^{\frac{-2amx^2}{\hbar}} \right) x \ dx = 0$$
 (Integral of odd function)

$$\langle x \rangle = 0$$

$$\langle x^{2} \rangle = \int_{-\infty}^{\infty} \psi^{*}(x,t) x^{2} \, \psi(x,t) \, dx = \int_{-\infty}^{\infty} \left(|A| e^{-a(mx^{2}+it)/\hbar} \right) x^{2} \left(|A| e^{-a(mx^{2}-it)/\hbar} \right) dx$$

$$\langle x^2 \rangle = |A|^2 \int_{-\infty}^{\infty} (e^{-\alpha x^2}) x^2 dx = 2|A|^2 \int_{0}^{\infty} (e^{-\alpha x^2}) x^2 dx$$

From table of integrals $\int_0^\infty (e^{-\alpha x^2}) x^2 dx = \frac{1}{4\alpha} \sqrt{\frac{\pi}{\alpha}}$

$$\langle x^2 \rangle = |A|^2 \frac{1}{2\alpha} \sqrt{\frac{\pi}{\alpha}} = \sqrt{\frac{\alpha}{\pi}} \frac{1}{2\alpha} \sqrt{\frac{\pi}{\alpha}} = \frac{1}{2\alpha} = \frac{\hbar}{4\alpha m}$$

$$\Delta x = \sqrt{\langle x^2 \rangle - \langle x \rangle^2} = \sqrt{\frac{\hbar}{4am} - 0} = \sqrt{\frac{\hbar}{4am}}$$

$$\langle p_{\chi} \rangle = m \frac{d}{dt} \langle x \rangle = 0$$
 (becouse $\langle x \rangle = 0$)

$$\langle p_x^2 \rangle = \int_{-\infty}^{\infty} \psi^*(x,t) (\hat{p}_x)^2 \, \psi(x,t) \, dx = \int_{-\infty}^{\infty} \psi^*(x,t) \left(-i\hbar \frac{\partial}{\partial x} \right)^2 \psi(x,t) \, dx$$

$$=-\hbar^2\int_{-\infty}^{\infty}\psi^*(x,t)\frac{\partial^2}{\partial x^2}\psi(x,t)\ dx=-\hbar^2\int_{-\infty}^{\infty}\left(|A|e^{-\frac{a(mx^2+it)}{\hbar}}\right)\frac{\partial^2}{\partial x^2}\left(|A|e^{-\frac{a(mx^2-it)}{\hbar}}\right)\ dx$$

$$=-\hbar^2\sqrt{\frac{\alpha}{\pi}}\int_{-\infty}^{\infty}\left(e^{-\frac{\alpha x^2}{2}-i\frac{at}{\hbar}}\right)\frac{\partial^2}{\partial x^2}\left(e^{-\frac{\alpha x^2}{2}+i\frac{at}{\hbar}}\right)dx$$

$$=-\hbar^2\sqrt{\frac{\alpha}{\pi}}\int_{-\infty}^{\infty}\left(e^{-\frac{\alpha x^2}{2}-i\frac{at}{\hbar}}\right)\frac{d}{dx}\left(\frac{d}{dx}e^{-\frac{\alpha x^2}{2}+i\frac{at}{\hbar}}\right)dx$$

$$=-\hbar^2\sqrt{\frac{\alpha}{\pi}}\int_{-\infty}^{\infty}\left(e^{-\frac{\alpha x^2}{2}-i\frac{at}{\hbar}}\right)\frac{d}{dx}\left(-\alpha x\ e^{-\frac{\alpha x^2}{2}+i\frac{at}{\hbar}}\right)\,dx$$

$$=-\hbar^2\sqrt{\frac{\alpha}{\pi}}\int_{-\infty}^{\infty}\left(e^{-\frac{\alpha x^2}{2}-i\frac{at}{\hbar}}\right)((\alpha x)^2-\alpha)e^{-\frac{\alpha x^2}{2}+i\frac{at}{\hbar}}\,dx$$

$$=-2\hbar^2\alpha\sqrt{\frac{\alpha}{\pi}}\bigg[\int_0^\infty \alpha x^2\ e^{-\alpha x^2}\ dx-\int_0^\infty e^{-\alpha x^2}\ dx\bigg]$$

From Γ - integrals $\int_0^\infty e^{-\alpha x^2} x^2 dx = \frac{1}{4\alpha} \sqrt{\frac{\pi}{\alpha}}$ and $\int_0^\infty (e^{-\alpha x^2}) dx = \frac{1}{2} \sqrt{\frac{\pi}{\alpha}}$

$$\langle p_x^2 \rangle = -2\hbar^2 \alpha \sqrt{\frac{\alpha}{\pi}} \left[\frac{1}{4} \sqrt{\frac{\pi}{\alpha}} - \frac{1}{2} \sqrt{\frac{\pi}{\alpha}} \right] = -2\hbar^2 \alpha \left[\frac{1}{4} - \frac{1}{2} \right] = \hbar a m$$

$$\Delta p_x = \sqrt{\langle p_x^2 \rangle - \langle p_x \rangle^2} = \sqrt{\hbar a m}$$

$$\Delta p_x \Delta x = \sqrt{\hbar am} \sqrt{\frac{\hbar}{4am}} = \frac{\hbar}{2}$$

Hermitian operator

If the operator \hat{A} satisfy the condition $\int \psi^* \hat{A} \psi \, dr = \int (\hat{A} \psi)^* \psi \, dr$ is called Hermitian operator.

Example 12: Prove that p_x is Hermitian operator?

Operator \hat{p}_x is said to be Hermitian when satisfying the relation:

$$\int \psi^* \hat{p}_x \psi \ dx = \int (\hat{p}_x \psi)^* \psi \ dx$$

$$\int_{-\infty}^{\infty} \psi^* \hat{p}_x \psi \, dx \int_{-\infty}^{\infty} \psi^* \left(-i\hbar \frac{\partial}{\partial x} \right) \psi \, dx = -i\hbar \int_{-\infty}^{\infty} \psi^* \left(\frac{\partial}{\partial x} \right) \psi \, dx$$

using integration by parts method, let $\psi^* = u$, $\frac{\partial \psi}{\partial x} dx = dv$

$$\int_{-\infty}^{\infty} u \, dv = uv \Big|_{-\infty}^{+\infty} - \int_{-\infty}^{\infty} v \, du$$

Then,
$$v = \psi$$
 , $du = \frac{\partial \psi^*}{\partial x} dx$

$$-i\hbar \int_{-\infty}^{\infty} \psi^* \left(\frac{\partial}{\partial x}\right) \psi \ dx = -i\hbar \psi^* \psi|_{-\infty}^{+\infty} + i\hbar \int_{-\infty}^{\infty} \psi \frac{\partial \psi^*}{\partial x} \ dx$$

$$=0+\int_{-\infty}^{\infty}\psi\left(i\hbar\frac{\partial}{\partial x}\psi^{*}\right)\,dx=\int_{-\infty}^{\infty}\psi\left(-i\hbar\frac{\partial}{\partial x}\psi\right)^{*}\,dx=\int_{-\infty}^{\infty}\psi(\hat{p}_{x}\psi)^{*}\,dx$$

So that \hat{p}_x is a Hermitian operator.

H.W.: Is the operator $\frac{\partial}{\partial x}$ Hermitian operator

Example 13: Prove that the eigen value correspond to any Hermitian operator are real quantities

So, we need to prove the eigen value a equal its conjugate, $a = a^*$

$$\hat{A}\psi = a\psi$$
 and $\hat{A}^*\psi^* = a^*\psi^*$

Multibly, from the left, the first equation by ψ^* , and the second equation by ψ and integrated them for the all space.

Assume, ψ is a normalized wave function

$$\int \psi^* (\hat{A}\psi) dr = \int \psi^* (a\psi) dr = a \int \psi^* \psi dr = a$$
 (1)

$$\int \psi (\hat{A}\psi)^* dr = \int \psi (a^*\psi^*) dr = a^* \int \psi \psi^* dr = a^*$$
 (2)

By subtracting equations (1), (2)

$$\int \psi^*(\hat{A}\psi) dr - \int \psi(\hat{A}\psi)^* dr = a - a^*$$

Since \hat{A} Hermitian operator then $\int \psi^*(\hat{A}\psi) dr = \int \psi(\hat{A}\psi)^* dr$

And $a = a^*$ That's mean the eigen value are real quantities