
Computer Application
(MATLAB)

(ماتلاب)تطبيقات الحاسبة
2024-2025

Lecture 4
by

Dr Murtada Dohan
murtada.dohan@uomus.edu.iq

mailto:murtada.dohan@uomus.edu.iq

Learning Objectives
• Subscripting, Colon Operator, end Keyword, Transpose,

Deletion.
• Understand the basic structure and purpose of if-else

statements in MATLAB.
• Be able to implement conditional logic using if, elseif, and

else.
• if statements with arrays
• Logical operations on arrays
• Element-wise

Metrics Operations
>> myarray = ones(2,2)/2
myarray =
0.5000 0.5000
0.5000 0.5000

•MATLAB responds with: ans = 2

Selecting Elements with Subscripting
• Use indices to select specific elements or submatrices.
• Examples:

u = [0.9, 0.7, 0.2, 0.4, 0.9];
u(3); % Accesses the 3rd element: 0.2

a = [1 2 3; 4 5 6];
a(2,3); % Accesses the element in the 2nd row, 3rd column: 6
a(1:2, 3); % Selects elements in rows 1 and 2, column 3

•MATLAB responds with: ans = 2

The Colon Operator in MATLAB
• Purpose: The colon operator (:) is versatile for creating vectors,

iterating, and subscripting.
• Examples:

a = [1 2 3; 4 5 6; 7 8 9];
a(2, :); % Selects the entire 2nd row: [4 5 6]
a(:, 3); % Selects the entire 3rd column: [3 6 9]
a(:); % Flattens matrix into a single column vector

•MATLAB responds with: ans = 2

Accessing the Last Element with end
• Explanation: end refers to the last index in a dimension.
• Examples:

q = [7 8 9 10; 6 1 2 20; 5 4 3 30];
q(end, end); % Accesses the last element: 30
q(2, end-1:end); % Selects last two elements in the 2nd row: [2 20]
q(end-2:end, end-1:end); % Selects submatrix of last two rows,
columns

•MATLAB responds with: ans = 2

Transposing Matrices
• Definition: The transpose operation switches rows with

columns.
• Syntax: Use ' to transpose.
• Examples:

•MATLAB responds with: ans = 2

Deleting Rows or Columns
• Syntax: Set a row or column to [] to delete it.
• Examples:

a = [1 2 3; 4 5 6; 7 8 9];
a(:, 2) = []; % Deletes the 2nd column
a=

1 3
4 6
7 9

•MATLAB responds with: ans = 2

Introduction to Conditional Statement
• What are Conditional Statements?

• Statements that execute different code based on certain conditions.
• Enable decision-making in programs, controlling which code

segments run.
• MATLAB’s if-else Structure:

• if: Runs a block of code if the condition is true.
• elseif: Specifies additional conditions.
• else: Runs a block of code if all previous conditions are false.

•MATLAB responds with: ans = 2

The Structure of if-else in MATLAB
• Basic syntax:

if condition
 % Code to execute if condition is true

elseif other_condition
% Code to execute if other_condition is true

else
% Code to execute if none of the conditions are true

End
• Note: Always close the if-else statement with end.

•MATLAB responds with: ans = 2

Example: Simple if Statement
• Example code to check if a number is positive:

x = 5;
if x > 0
 disp('x is positive’);
end

• Explanation:
• If x > 0 is true, MATLAB displays "x is positive.“
• If x were negative or zero, the code within if would not execute.

•MATLAB responds with: ans = 2

Example: if-else Statemen
• Example code to check if a number is positive or negative:

x = -3;
if x > 0

disp)'x is positive’(;
else

disp)'x is negative’(;
end

• Explanation:
• MATLAB evaluates x > 0. If false, the code within else executes instead..

•MATLAB responds with: ans = 2

Example: if-elseif-else Statement
• Example to check if a number is positive, negative, or zero:

x = 0;
if x > 0
 disp('x is positive');
elseif x < 0
 disp('x is negative');
else
 disp('x is zero');
end

• Explanation:
• MATLAB evaluates each condition in order until one is true. If none are true, else executes.

•MATLAB responds with: ans = 2

Using Logical Operators in Conditions
• Logical Operators allow combining multiple conditions:

• &&: Logical AND (both conditions must be true)
• ||: Logical OR (at least one condition must be true)
• ~: Logical NOT (inverts true to false and vice versa)

• Example:
a = 5; b = 10;
if a > 0 && b > 0
 disp('Both a and b are positive');
end

•MATLAB responds with: ans = 2

Nested if-else Statements
• What is Nesting?

• Placing one if-else statement inside another for complex conditions.
• Example:

x = 10;
if x > 0
 if x > 5
 disp('x is positive and greater than 5');
 else
 disp('x is positive but 5 or less');
 end
end

•MATLAB responds with: ans = 2

Example: Grade Classification
• Write a script to classify a student's grade based on their score:
• Example:

score = 85;
if score >= 90
 disp('Grade: A’);
elseif score >= 80
 disp('Grade: B’);
elseif score >= 70
 disp('Grade: C’);
elseif score >= 60
 disp('Grade: D’);
else
 disp('Grade: F’);
end

•MATLAB responds with: ans = 2

Common Mistakes to Avoid
• Forgetting to use end to close if-else blocks.
• Incorrectly using = instead of == for equality check.
• Overusing nested if-else statements when simpler logic would

suffice.
• Mixing up logical operators (e.g., && and ||).

•MATLAB responds with: ans = 2

if with Entire Arrays
• MATLAB evaluates conditions in if statements as true if all

elements of an array meet the condition.
• Example:

A = [1, 2, 3];
if all(A > 0)
 disp('All elements are positive’);
end

• Note: If any element does not satisfy the condition, if will
consider the entire condition as false.

•MATLAB responds with: ans = 2

Using all and any Functions with Arrays
• all(array): Returns true if all elements of array are true.
• any(array): Returns true if at least one element of array is true.
• Examples:

A = [1, -3, 5];
if any(A < 0)
 disp('There are negative elements');
End
if all(A > 0)
 disp('All elements are positive');
else
 disp('Not all elements are positive');
end

•MATLAB responds with: ans = 2

Applying Element-wise Condition
• Element-wise conditions allow applying logical tests to each

element in an array.
• Syntax: Use element-wise operators with arrays (&, |, ~).
• Example:

A = [5, -3, 8];
B = A > 0; % Element-wise comparison
disp(B); % Output: [1 0 1]

•MATLAB responds with: ans = 2

Conditional Indexing with Arrays
• You can use logical conditions to select elements from an array.
• Example:

A = [1, -2, 3, -4, 5];
posElements = A(A > 0); % Select positive elements
disp(posElements); % Output: [1 3 5]

•MATLAB responds with: ans = 2

Combining Multiple Conditions on Arrays
• Use logical operators to combine conditions for element-wise

evaluations.
• Example:

A = [10, 15, 20, 25, 30];
selectedElements = A(A > 10 & A < 25); % Elements between 10 and 25
disp(selectedElements); % Output: [15 20]

•MATLAB responds with: ans = 2

Using Nested if Statements with Arrays
• Use nested if statements for multi-step checks on arrays.
• Example:

A = [4, 9, 16, 25];
if all(A > 0)
 if any(sqrt(A) == 5)
 disp('Array contains an element whose square root is 5');
 else
 disp('No element has a square root of 5');
 end
end

•MATLAB responds with: ans = 2

Review of Key Concepts
• Subscripting, Colon Operator, end Keyword, Transpose, Deletion.
• Use if, elseif, and else to create conditional branches
• if with Arrays: Evaluates as true only if all elements meet the condition.
• Logical Functions: all and any for evaluating conditions across elements.
• Element-wise Conditions: Apply conditions on individual array elements.
• Conditional Indexing: Select elements that meet specific conditions.

Practice Exercise 1
• ask 1: Create an array and check if all elements are greater

than zero.
• Task 2: Find and display elements that are greater than a

specified threshold (e.g., 10).
• Task 3: Check if any element in the array is negative; if so,

display "Contains negative values."

Exercises Submission
• All exercises need to be submitted by Monday 4th Nov 23:59.

• Submit your answers via: https://forms.gle/UaPR65LQ3ib9DUYn9

https://forms.gle/UaPR65LQ3ib9DUYn9

Let’s try MATLAB
Launch MATLAB and work towards the exercises

	Slide 1: Computer Application (MATLAB)
	Slide 2: Learning Objectives
	Slide 3: Metrics Operations
	Slide 4: Selecting Elements with Subscripting
	Slide 5: The Colon Operator in MATLAB
	Slide 6: Accessing the Last Element with end
	Slide 7: Transposing Matrices
	Slide 8: Deleting Rows or Columns
	Slide 9: Introduction to Conditional Statement
	Slide 10: The Structure of if-else in MATLAB
	Slide 11: Example: Simple if Statement
	Slide 12: Example: if-else Statemen
	Slide 13: Example: if-elseif-else Statement
	Slide 14: Using Logical Operators in Conditions
	Slide 15: Nested if-else Statements
	Slide 16: Example: Grade Classification
	Slide 17: Common Mistakes to Avoid
	Slide 18: if with Entire Arrays
	Slide 19: Using all and any Functions with Arrays
	Slide 20: Applying Element-wise Condition
	Slide 21: Conditional Indexing with Arrays
	Slide 22: Combining Multiple Conditions on Arrays
	Slide 23: Using Nested if Statements with Arrays
	Slide 24: Review of Key Concepts
	Slide 25: Practice Exercise 1
	Slide 26: Exercises Submission
	Slide 27: Let’s try MATLAB

