

Computer Application (MATLAB)

تطبيقات الحاسبة (ماتلاب) 2025-2024

Week 2

Dr Murtada Dohan

Learning Objectives

- Get familiar with basic MATLAB operations and expressions.
- Learn how to create matrices.
- Understand variable assignments.
- Use matrix generators to create common matrices with zeros, ones, random numbers, or identity matrices.
- Apply comments to improve code clarity and use clc and clear commands to manage the workspace efficiently.

First Steps with MATLAB (1)

 To get MATLAB to work out basic operations, simply type at the command prompt:

$$1 + 1$$

• MATLAB responds with: ans = 2

```
Command Window

>> 1 + 1

ans =

2

fx >> |
```


First Steps with MATLAB (2)

MATLAB stores the result in the variable ans, which you can reuse.

• Ex: ans * ans

• MATLAB responds with: ans = 4

```
Command Window

>> 1 + 1

ans =

2

>> ans * ans

ans =

4

fx >> |
```


Spacing in MATLAB Expression

The spacing of operators doesn't affect the result.

• Gives the same answer as:

 Clearer formatting improves readability. Use parentheses for clarity:

$$1 + 3*2 - (1/2)*4$$

Variables in MATLAB

- Definition: A variable is a named location in memory that stores data.
- Rules for Variable Names:
 - Must start with a letter.
 - Can include letters, numbers, and underscores (_).
 - MATLAB is case-sensitive (e.g., myVar and myvar are different).

Variables in MATLAB

Examples of valid variables:

```
x = 5;
speed_of_light = 3e8;
temperature1 = 298;
```

- Invalid variables:
 - Numbers or special characters at the start (e.g., 1stVar or @value).

Variable Assignment

Assignment Statement Format:

```
variable_name = expression;
```

• Examples:

```
a = 10;
b = 25 + 7;
c = sqrt(a)
```

- Reassigning Values:
- You can update the value of a variable at any time:

$$a = 10;$$

 $a = a + 5;$

Variables and Assignment in MATLAB

- Variables are memory locations used to store data.
- Variable names can include letters and digits but must start with a letter.
- MATLAB does not require variable declarations, but this can sometimes lead to errors.
- Assignment Example:

```
a = 6;
name = 'Mark';
```


Basic Arithmetic Operators

- MATLAB supports basic arithmetic operators:
 - +: Addition
 - -: Subtraction
 - *: Multiplication
 - /: Division
 - ^: Power
- Examples:

$$x = 3 + 5;$$

 $y = 10 - 2;$
 $z = 4 * 7;$
 $w = 8 / 2;$
 $p = 3^2;$

Operator Precedence in MATLAB

- Order of Operations:
 - MATLAB follows the PEMDAS rule:
 - Parentheses
 - Exponents (Power ^)
 - Multiplication and Division (*, /)
 - Addition and Subtraction (+, -)
- Examples:

```
result1 = 3 + 5 * 2;
result2 = (3 + 5) * 2;
result3 = 5^2 - 2 * 3;
```


Displaying Variables

- Use the disp function to display variable contents.
- Example: disp(a); disp(name);
- Alternatively, typing the variable name at the command prompt will display its value.

Entering Matrices in MATLAB

- Steps to type a matrix into MATLAB:
 - Begin with a square bracket [.
 - Separate elements in a row with spaces or commas.
 - Use a semicolon; to separate rows.
 - End with a square bracket].

• Example: a = [1 2 3; 4 5 6; 7 8 9]

Generating Matrices with MATLAB

- MATLAB offers functions for generating specific types of matrices:
 - zeros(m, n): Generates a matrix filled with zeros.
 - ones(m, n): Generates a matrix filled with ones.
 - randi(max_val, [m, n]): Generates a matrix with random integers.
 - eye(n): Generates an identity matrix.

Generating Matrices with MATLAB

• Examples:

$$u = randi(10, [2 2])$$

$$u = 7 \qquad 2$$

Command Window

```
>> u = randi(10, [3 3])

u =

9 8 7
10 8 2
7 4 8
```


Try on your machine

- Z = zeros(3, 3);
- 0 = ones(2, 4);
- U = randi(5, [3, 3]);
- I = eye(4);

The clear all Command

- Definition: clear all removes all variables, functions, and MEX files from the workspace.
- Purpose:
 - To completely reset the workspace.
 - Useful when starting a fresh session or avoiding conflicts.
- Usage:

clear all;

 Note: It's more comprehensive than clear since it also clears functions and variables.

The clc Command

- Definition: clc clears the Command Window, removing all previous output.
- Purpose:
 - To clean up the Command Window when starting a new calculation or experiment.
- Usage: clc
- Example:

```
x = 10; disp(x);
```

• After:

Commands Review

• clc:

- Clears the Command Window.
- Does not affect variables or the workspace.

• clear:

- Removes specific variables or all variables if no argument is given.
- Does not affect functions or the Command Window.

• clear all:

- Clears everything (variables, functions, MEX files).
- Resets the entire workspace.

Review of Key Concepts

- Recap:
 - How to enter expressions and work with the ans variable.
 - Properly spacing operations for readability.
 - Creating matrices manually and using matrix generators (zeros, ones, randi, eye).
 - Variable assignment and displaying results using disp

Practice Exercise 1

- Create a 5x5 matrix of random integers between 1 and 10.
- Create a 3x3 identity matrix and a 4x4 matrix filled with ones.

Practice Exercise 2

- Assign values to two variables and compute their sum, product, and difference.
- Display the result using disp.

Practice Exercise 3

- Task: Define variables x=22, y=3,z=5.
- Apply the following equations:
 - Resutls1=x+4*y+10
 - Results2=(x*2)+z/3
 - Results3= $y^z+(x^2)/3$

• All exercises need to be submitted by Monday 21st Oct 23:59.

Submit your answers via: https://forms.gle/VTybujzDdq1r9gULA

Let's try MATLAB

Launch MATLAB and work towards the exercises

