

#### Al-Mustaqbal University College of Engineering & Technology Computer Techniques Engineering Department



#### **Digital Communication**

#### Lecture 4

#### Pulse Duration and Position Modulation (PDM & PPM)

Dr. Ahmed Hasan Al-Janabi PhD in Computer Network Email: <u>Ahmed.Janabi@uomus.edu.iq</u>

# **Aims of this Lecture**

By the end of this lecture, students will be able to:

- Understand the principles of Pulse Duration Modulation (PDM) and Pulse Position Modulation (PPM).
- **Describe** how PDM and PPM are generated.
- Identify the differences between PDM, PPM, and PAM.
- **Recognize** the applications and transmission requirements for PDM and PPM.

## Pulse Duration Modulation (PDM) -Overview

- Pulse Duration Modulation (PDM), also called Pulse Width Modulation (PWM), is a technique that modulates the duration (width) of each pulse.
- The pulse **width** changes based on the amplitude of the input signal x (t), while the leading edge is fixed.
- PWM is commonly used in applications where the amount of time the signal is high needs to represent the **input signal**.

# **Generation of PWM**

#### How PWM is Generated:

- The input signal x(t) is applied to the non-inverting input of a comparator.
- A **sawtooth waveform** is applied to the inverting input of the comparator.
- The output is high when x(t) exceeds the sawtooth waveform.
- This creates a pulse with a **variable trailing edge**, representing the amplitude of x(t) by the pulse width.

#### **Transmission Requirements for PWM**

- Rise Time Condition:
  - For precise transmission, rise time  $t_r$  should be much smaller than the sampling period  $T_s$ :  $t_r \ll T_s$ .
- Bandwidth Requirement:
  - The minimum bandwidth required for PWM is determined by:

$$B_T \geq rac{1}{2t_r}$$

where  $t_r$  is the rise time of the pulse.

# **Applications of PWM**

- **Digital Data Transmission:** Used to represent digital data by adjusting the width of pulses, ensuring reliable communication.
- Audio Signal Transmission: Utilized in VoIP systems to transmit audio signals by modulating the pulse width based on sound levels.

## Pulse Position Modulation (PPM) -Overview

- Pulse Position Modulation (PPM): A modulation technique where the position of each pulse is varied according to the amplitude of the input signal x(t).
- Unlike PWM, PPM has a **fixed pulse width** but changes the position of each pulse based on the input signal.

### **Generation of PPM**

- How PPM is Generated:
  - The trailing edge of each PWM pulse triggers a monostable circuit with a fixed duration.
  - This produces a pulse at a specific position that shifts in time, depending on the amplitude of x(t) at the sampling instance KTs.

## **Characteristics of PPM Signals**

- Fixed Pulse Width: The width of each pulse remains constant.
- Variable Position: The pulse position shifts based on the input signal's amplitude at each sampling instance KTs.

#### **Transmission Requirements for PPM**

- Rise Time Condition:
  - For accurate transmission, the rise time  $t_r$  should be much smaller than the sampling period  $T_s$ :  $t_r \ll T_s$ .
- Bandwidth Requirement:
  - The required bandwidth for PPM transmission is:

$$B_T \geq rac{1}{2t_r}$$

where  $t_r$  is the rise time.

# **Applications of PPM**

- **Optical Communication:** Used in fiber optic and free-space communications where noise resistance is critical.
- **Remote Control Systems:** Employed in remote controls for drones and RC vehicles where precise timing is essential.
- **Digital Transmission:** Used in environments requiring noise resistance due to high timing

#### Comparison of PAM, PWM, and PPM

| Basis for Comparison                                | РАМ            | PWM                   | РРМ                   |
|-----------------------------------------------------|----------------|-----------------------|-----------------------|
| Varying parameter                                   | Amplitude      | Width                 | Position              |
| Immunity towards noise                              | Low            | High                  | High                  |
| Signal to noise ratio                               | Low            | Moderate              | Comparitively high    |
| Need of synchronization pulse                       | Not exist      | Not exist             | Exist                 |
| Bandwidth dependency                                | On pulse width | On rise time of pulse | On rise time of pulse |
| Transmission power                                  | Variable       | Variable              | Constant              |
| Bandwidth requirement                               | Low            | High                  | High                  |
| Similarity of implementation                        | Similar to AM  | Similar to FM         | Similar to PM         |
| Synchronization between<br>Transmitter and Receiver | Not needed     | Not needed            | Needed                |



(a) Block diagram of PWM and PPM generator.(b) Waveforms

# Thank you