Diabetes Mellitus

PROFESSOR DOCTOR SAAD HASAN MOHAMMED ALI

2024/2025

Learning Objectives:

- 1. Describe pathophysiology of diabetes mellitus [DM].
- 2. Describe etiology of DM.
- 3. Outline types of DM
- 4. Outline epidemiology and risk factors of DM.
- 5. Reviewing & Illustration <u>figures of</u> the common general and oral complications of DM
- 6. Reviewing general medical management [diagnosis and treatment] of patients with DM=.

Diabetes Mellitus (DM):

A metabolic disease = characterized by an elevations of blood glucose levels (= Hyperglycemia).

 Diabetes is due to either the pancreas not producing enough insulin or the cells of the body not responding properly to the insulin produced.

■ Need Glucose → **Obtained** In the fasting state from:

- 1. Intestinal Absorption of Glucose
- □ 2. Glycogenolysis: → this process in the liver -> breaks down glycogen → releases glucose into the bloodstream.
- ☐ 3. Gluconeogenesis: → this process in the liver -> produces glucose from non-carbohydrate sources \rightarrow \rightarrow such as amino acids + fatty acids → releases glucose into the bloodstream.

PATHOPHYSIOLOGY

 The body obtains glucose from three main places:

Gluconeogenesis, the generation of glucose from non-carbohydrate substrates in the body.

"Normal Physiology"

- **During digestion:** most foods are broken down into glucose, then enters blood and used by cells for energy and growth.
- ☐ Most cells: EXCept central nervous system, Require the presence of insulin to allow glucose entry.
 - **Insulin:**
- Produced by the <u>Cells of the islets of Langerhans of the pancreas</u> and increased insulin secretion occurs in response to increased blood glucose concentrations.
- Binds to specific cellular receptors to exert its effects.
- **Suppresses** gluconeogenesis and promotes protein synthesis and lipogenesis.

Hormones Increase Blood Glucose=

- 1.Glucagon
- 2. Catecholamines
- 3. Growth hormones
- 4. Thyroid hormones
- 5. Glucocorticoids.

Diabetes Mellitus/// Etiology

- 1) In islets of Langerhans of pancreas = two main endocrine cells = insulin-producing beta cells + glucagon secreting alpha cells.
- 2) Beta and alpha cells are continually changing their hormonal levels based on =glucose environment.
- 3) Without the balance between insulin and glucagon= the glucose levels become Abnormally + Un-Controlled [+ OR]

 [بدون توازن الهورمونين= انحراف خطير بمستويات سكر الدم]
- 1) In DM= insulin = is either absent <u>and/or</u> has impaired its action (insulin resistance)= leads to **hyperglycemia**.

Cardinal Signs of Diabetes Mellitus (DM) :-

- Polydipsia
- **Polyuria**
- **Polyphagia**
- Weigh loss= Type 1 DM
- Obesity= Type 2 DM
- Weakness
- **Poor wound healing**
- **Severe infection**

 Lost blood volume will be replaced osmotically from water held in body cells and other body compartments

<u>"American Diabetes Association</u> Classification of Diabetes Mellitus / DM

<<5 general types (Determined by the Underlying Mechanism)>>

- 1. Type 1 diabetes: (due to <u>autoimmune</u>
- β-cell destruction → leading to absolute insulin deficiency
- [[including LADA= latent autoimmune diabetes of
- adulthood]]. autoimmune type 1 diabetes rarely
- occurs before 6 months of age.

Type 1 DM

Results from the pancreas's failure to produce enough insulin.

 This form was previously referred to as "insulindependent diabetes mellitus" (IDDM) or "juvenile diabetes".

- Genetic predisposition
 factors = 1/3th
 susceptibility to Type 1 DM.
- Direct toxicity to β cells
- Autoimmune reaction againstβ cells.

Type 1 Diabetes Mellitus

- 3 main Environmental categories:
- Mumps, cytomegalovirus and Epstein-Barr viruses.
- 2) Specific drugs or chemicals.
- Dietary constituents: [= diabetogenic toxins]
- A. Nitrosamines:
- (smoked and cured meats + coffee)
- B. Bovine serum albumin (cow's milk)

2. Type 2 diabetes:

(due to a progressive loss of adequate \(\beta\)-cell insulin secretion on background of insulin resistance)

DIABETES

o Type 2 DM

o Type 2 DM

Begins with insulin resistance, a condition in which cells fail to respond to insulin properly.

- This form was previously referred to as "non insulindependent diabetes mellitus" (NIDDM) or "adult-onset diabetes".
- The primary cause is excessive body weight and not enough exercise.

from the blood into the cells

Pancreas

(Beta cells found In islets of Langerhans)

in response to rising level of blood glucose

<u> Abnormal Pathophysiology:-</u>

- 1. If insufficient amount of insulin available
- 2. If <u>insulin Resistance</u> = respond poorly to insulin <u>Type</u> 2 DM

high level of blood glucose

[<u>Diabetes Mellitus</u>]

DIABETES MELLITUS

<u>3.</u>

Gestational

diabetes

mellitus:

Gestational Diabetes Mellitus

Is the third main form

and occurs in

pregnant women

without a previous

history of diabetes

(diagnosed in second or third trimester of pregnancy)

- Gestational diabetes mellitus (GDM) resembles type 2 DM in several aspects.
 - Involves a combination of relatively inadequate insulin secretion and responsiveness.
 - It occurs in about 2–10% of all <u>pregnancies</u> and may improve or disappear after delivery.

4. Specific DM

Types=Monogenic

diabetes syndromes

(such as <u>neonatal diabetes</u> and maturity-onset diabetes of the young).

- **☐ Maturity-onset diabetes of the young (MODY)**
- 1) Autosomal dominant inheritance
 - =mutated glucokinase (GK) gene=
 - leading to increased glucose production
- 2) Child = have 50% chance to inherit DM
- 3) subclinical at birth >>>>

clinically presented before age of 25

years

Diagnosis of MODY?

- 1) Onset before 25 years of age
- 2) DM in two consecutive family generations
- 3) Absence of autoantibodies to be antigens
- 4) Fanctes produce endogenous insulin secretion
 - + Preserved serum C-peptide= level of >200
 - pmol/L | while In type 1 DIVI insulin production is
 - very low].
 - [C-peptide links the A and B chains of insulin]

Neonatal Diabetes=

Commonly due to Autosomal dominant mutations in the:

```
1.. chromosome 11 [30%] = KCNJ11 and ABCC8 genes encoding \beta-cell K_{ATP} channel = ... lead to = Overexpression of genes
```

<u>OR</u>

- 2.. chromosome 6 [20%]= Insulin gene (INS)= ... lead to= Decrease insulin production
 - very high levels of blood glucose

- 5. Secondary Diabetes? Due to other causes / Other Conditions:
- A.Diseases of the Pancreas: such as
- 1.+cystic fibrosis
- 2.+ Pancreatitis
- 3.+ Pancreatic cancer
- 4.+ Glucagonoma
- 5. + Hemochromatosis (=harmful levels of

iron that damage pancreas)

- 5. Secondary Diabetes? Due to other causes / Other Conditions:
- B.. Drug- or chemical- induced
- diabetes (using them are known to increase the risk of diabetes:
- 1. Excess production of antagonists to insulin (= catecholamines)
- 2. glucocorticoid,
- 3. thiazide diuretics
- 4. some HIV medications
- 5. antipsychotics,

C.. Diseases-induced Diabetes

- 1. Viral infections = congenital rubella
- 2. Genetic syndromes = Down's syndrome).

COMPLICATIONS OF DIABETES MELLITUS:

I. Acute complications: 1)diabetic ketoacidosis 2)diabetic coma

II. Chronic complications:

- □ A. Microvascular :
- 1)Retinopathy
- 2) Nephropathy
- 3) Neuropathy
- 4) Diabetic Foot
- 5)Dermopathy
- □ B. Macrovascular:
- 1) Cerbro-vascular Accidents.
- 2) Cardio-vascular Accidents.
- 3)Peripheral Vascular Disease.

Any questions?

