
Computer Organization and Application

Lecture 4

Dr Mohammed Fadhil
Email: mohammed.fadhil1@uomus.edu.iq

Al-Mustaqbal University, College of Engineering & Technology, Computer Engineering Department

Computer Organization and Application

Instruction set design in von Neuman

Al-Mustaqbal University, College of Engineering & Technology, Computer Engineering Department

Learning Objectives

• Understand the Von Neumann model

• Understand the Instruction: Opcode & Operands

• Understand of Reading/Loading Operands from Memory

• Understand the Reading/Loading Word-Addressable Memory

• Overview of Instruction Format With Immediate

von Neumann Model: Two Key Properties

• Von Neumann model is also called stored program computer (instructions in
memory). It has two key properties:

• Stored program

o Instructions stored in a linear memory array

o Memory is unified between instructions and data
▪ The interpretation of a stored value depends on the control signals

• Sequential instruction processing

o One instruction processed (fetched, executed, completed) at a time

o Program counter (instruction pointer) identifies the current instruction

o Program counter is advanced sequentially except for control transfer instructions

Stored Program & Sequential Execution

• Instructions and data are stored in memory

o Typically the instruction length is the word length

• The processor fetches instructions from memory sequentially

o Fetches one instruction

o Decodes and executes the instruction

o Continues with the next instruction

• The address of the current instruction is stored in the program counter (PC)

o If word-addressable memory, the processor increments the PC by 1 (in LC-3)

o If byte-addressable memory, the processor increments the PC by the instruction length
in bytes (4 in MIPS)
▪ In MIPS the OS typically sets the PC to 0x00400000 (start of a program)

A Sample Program Stored in Memory

• A sample MIPS program
o 4 instructions stored in consecutive words in memory

▪ No need to understand the program now. We will get back to it

The Instruction

• An instruction is the most basic unit of computer processing

o Instructions are words in the language of a computer

o Instruction Set Architecture (ISA) is the vocabulary

• The language of the computer can be written as

o Machine language: Computer-readable representation (that is, 0’s and 1’s)

o Assembly language: Human-readable representation

• We will study LC-3 instructions and MIPS instructions

o Principles are similar in all ISAs (x86, ARM, RISC-V, …)

The Instruction: Opcode & Operands

• An instruction is made up of two parts
o Opcode and Operands

• Opcode specifies what the instruction does

• Operands specify who the instruction is to do it to

• Both are specified in instruction format (or instr. encoding)
o An LC-3 instruction consists of 16 bits (bits [15:0])

o Bits [15:12] specify the opcode → 16 distinct opcodes in LC-3

o Bits [11:0] are used to figure out where the operands are

Instruction Types

• There are three main types of instructions

• Operate instructions

o Execute operations in the ALU

• Data movement instructions

o Read from or write to memory

• Control flow instructions

o Change the sequence of execution

Let us start with some example instructions

An Example Operate Instruction

• Addition

High-level code Assembly

• add: mnemonic to indicate the operation to perform

• b, c: source operands

• a: destination operand

• a ← b + c

a = b + c; add a, b, c

Registers

• We map variables to registers

add a, b, c

b = R1
c = R2
a = R0

b = $s1
c = $s2
a = $s0

Assembly

LC-3 registers

MIPS registers

From Assembly to Machine Code in LC-3

ADD R0, R1, R2

LC-3 assembly
• Addition

Instruction Format (or Encoding)

• LC-3 Operate Instruction Format

o OP = opcode (what the instruction does)

▪ E.g., ADD = 0001

• Semantics: DR ← SR1 + SR2

▪ E.g., AND = 0101

• Semantics: DR ← SR1 AND SR2

o SR1, SR2 = source registers

o DR = destination register

From Assembly to Machine Code in MIPS

add $s0, $s1, $s2

MIPS assembly
• Addition

Instruction Format: R-Type in MIPS

• MIPS R-type Instruction Format
o 3 register operands

o 0 = opcode

o rs, rt = source registers

o rd = destination register

o shamt = shift amount (only shift operations)

o funct = operation in R-type instructions

Reading Operands from Memory

• With operate instructions, such as addition, we tell the computer to
execute arithmetic (or logic) computations in the ALU

• We also need instructions to access the operands from memory

o Load them from memory to registers

o Store them from registers to memory

• Next, we see how to read (or load) from memory

• Writing (or storing) is performed in a similar way, but we will talk
about that later

An Example Operate Instruction

• Load word

High-level code Assembly

o load: mnemonic to indicate the load word operation

o A: base address

o i: offset
▪ E.g., immediate or literal (a constant)

o a: destination operand

o Semantics: a ← Memory[A + i]

a = A[i]; load a, A, i

Load Word in LC-3 and MIPS

• LC-3 assembly

• MIPS assembly (assuming word-addressable)

a = A[2]; LDR R3, R0, #2
R3 ← Memory[R0 + 2]

R3 ← Memory[R0 + 2] LC-3 assembly

a = A[2]; lw $s3, 2($s0)

High-level code MIPS assembly

$s3 ← Memory[$s0 + 2]

These instructions use a particular addressing mode (i.e., the
way the address is calculated), called base+offset

Load Word in Byte-Addressable MIPS

• MIPS assembly

• Byte address is calculated as: word_address * bytes/word

– 4 bytes/word in MIPS

– If LC-3 were byte-addressable (i.e., LC-3b), 2 bytes/word

a = A[2]; lw $s3, 8($s0)
$s3 ← Memory[$s0 + 8]

MIPS assemblyHigh-level code

Instruction Format With Immediate

• LC-3

• MIPS

LDR R3, R0, #2

LC-3 assembly

lw $s3, 8($s0)

MIPS assembly

Quiz – Group C

1. In a hierarchical computer system design, what does ‘structure’
refer to? (Multichoice).

– a) The way components are connected b) The operation of individual
components c) The type of memory used d) The control flow of data

2. Can you name and explain the four basic functions that every
computer performs? (List).

3. All models in a computer family, like the Intel x86 family, have the
same organization but different architectures (True/False– correct
if false).

Quiz – Group B

1. What does the sequencing logic in the Control Unit do?
(Multichoice).

– a) Stores temporary data b) Controls the order of instruction
execution c) Connects the CPU to peripherals d) Manages data
movement

2. Think about the CPU—what are its main parts, and what does
each one do? (List).

3. The Control Unit (CU) in the CPU is responsible for performing
arithmetic and logic operations. (True/False– correct if false).

THANK YOU ☺

	Slide 1
	Slide 3: Learning Objectives
	Slide 18: von Neumann Model: Two Key Properties
	Slide 19: Stored Program & Sequential Execution
	Slide 20: A Sample Program Stored in Memory
	Slide 21: The Instruction
	Slide 22: The Instruction: Opcode & Operands
	Slide 23: Instruction Types
	Slide 24: An Example Operate Instruction
	Slide 25: Registers
	Slide 26: From Assembly to Machine Code in LC-3
	Slide 27: Instruction Format (or Encoding)
	Slide 28: From Assembly to Machine Code in MIPS
	Slide 29: Instruction Format: R-Type in MIPS
	Slide 30: Reading Operands from Memory
	Slide 31: An Example Operate Instruction
	Slide 32: Load Word in LC-3 and MIPS
	Slide 33: Load Word in Byte-Addressable MIPS
	Slide 34: Instruction Format With Immediate
	Slide 35: Quiz – Group C
	Slide 36: Quiz – Group B
	Slide 37

