JL 6 T i Jllda o 4l a
AL MUSTAQBAL UNIVERSITY

dosimll Glisillg Gwaimll &ils

Computer Organization and Application

Lecture 4
Instruction set design in von Neuman

Dr Mohammed Fadhil
Email: mohammed.fadhill@uomus.edu.iq

Al-Mustagbal University, College of Engineering & Technology, Computer Engineering Department

Learning Objectives

Uno
Jnc
Jnc

Jnc

erstanc
erstanc
erstanc

erstanc

the Von Neumann model

the Instruction: Opcode & Operands

of Reading/Loading Operands from Memory

the Reading/Loading Word-Addressable Memory

Overview of Instruction Format With Immediate

von Neumann Model: Two Key Properties

Emm—

* Von Neumann model is also called stored program computer (instructions in
memory). It has two key properties:

e Stored program

o Instructions stored in a linear memory array

o Memory is unified between instructions and data
= The interpretation of a stored value depends on the control signals

e Sequential instruction processing
o One instruction processed (fetched, executed, completed) at a time
o Program counter (instruction pointer) identifies the current instruction
o Program counter is advanced sequentially except for control transfer instructions

Stored Program & Sequential Execution

* Instructions and data are stored in memory
0 Typically the instruction length is the word length
* The processor fetches instructions from memory sequentially
o Fetches one instruction
o Decodes and executes the instruction
o Continues with the next instruction
* The address of the current instruction is stored in the program counter (PC)

o If word-addressable memory, the processor increments the PC by 1 (in LC-3)
o If byte-addressable memory, the processor increments the PC by the instruction length

in bytes (4 in MIPS)

= |n MIPS the OS typically sets the PC to 0x00400000 (start of a program)

A Sample Program Stored in Memory

* A sample MIPS program

o 4 instructions stored in consecutive words in memory
= No need to understand the program now. We will get back to it

MIPS assembly
1w sSt2, 32(S0)
add $s0, $sl1, $s2

addi $t0, $s3, -12
sub $t0, $t3, S$tb5 0040000C| 016D4022

Machine code (encoded instructions) 00400008 | 2268FFF4
0x8COA0020 00400004 | 02328020
0%02328020 00400000 | 8COA0020 |« PC

0x2268FFF4
0x016D4022

Byte Address Instructions

The Instruction

* An instruction is the most basic unit of computer processing
o Instructions are words in the language of a computer
o Instruction Set Architecture (ISA) is the vocabulary
* The language of the computer can be written as
o Machine language: Computer-readable representation (that is, 0’s and 1’s)
o Assembly language: Human-readable representation
* We will study LC-3 instructions and MIPS instructions
o Principles are similar in all ISAs (x86, ARM, RISC-V, ...)

The Instruction: Opcode & Operands

—

* An instruction is made up of two parts
o Opcode and Operands

* Opcode specifies what the instruction does
* Operands specify who the instruction is to do it to

* Both are specified in instruction format (or instr. encoding)

o An LC-3 instruction consists of 16 bits (bits [15:0])
o Bits [15:12] specify the opcode - 16 distinct opcodes in LC-3
o Bits [11:0] are used to figure out where the operands are

15 14 13 12 11 10 9 8 7 6 S5 4 3 2 1 0
0O 0 0 1 1 1 010 1= OO0 Of1 T O
ADD R6 R2 R6

Instruction Types

W

* There are three main types of instructions
* Operate instructions

o Execute operations in the ALU
 Data movement instructions

o Read from or write to memory

e Control flow instructions
o Change the sequence of execution

Let us start with some example instructions

An Example Operate Instruction
O
* Addition
High-level code Assembly

* add: mnemonic to indicate the operation to perform

* b, c: source operands
* a: destination operand

ca&b+c

Registers

R
* We map variables to registers LC-3 registers

Assembly

-
MIPS registers

From Assembly to Machine Code in LC-3

T
LC-3 assembly

e Addition
ADD RO, R1, R2

Field Values
OP DR SR1 SR2
1 0 1 0] 00 2

Machine Code (Instruction Encoding)
OoP DR SR1 SR2

0001 | 000 | 001 (OO0 O10

15 14 13 12 11 10 9 8 7 B 5 4 3 2 1 0

0x1042

Machine Code, in short (hexadecimal)

Instruction Format (or Encoding)

* LC-3 Operate Instruction Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
OP DR SR1 (0] 00| SR2
4 bits 3 bits 3 bits 3 bits

o OP = opcode (what the instruction does)
= E.g., ADD =0001
* Semantics: DR € SR1 + SR2
= E.g., AND =0101
* Semantics: DR < SR1 AND SR2
o SR1, SR2 = source registers

o DR = destination register 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0O 0 0 1 1 1 0f0 I 0|00 O|1 1 O

ADD R6 R2 R6

From Assembly to Machine Code in MIPS

S
MIPS assembly

-
"

Field Values
op rs rt rd shamt funct
0 17 18 16 0 32

rd«rs+rt

Machine Code (Instruction Encoding)
op rs rt rd shamt funct

000000 | 10001 | 10010 | 10000 | OO000 | 100000

31 26 25 21 20 16 15 11 10 6 5 0

0x02328020

Instruction Format: R-Type in MIPS

A——

* MIPS R-type Instruction Format
o 3 register operands

0 rs rt rd

shamt

funct

6 bits S bits 5 bits 5 bits
o 0 = opcode
o rs, rt = source registers
o rd = destination register
o shamt = shift amount (only shift operations)
o funct = operation in R-type instructions

S bits

6 bits

Reading Operands from Memory

* With operate instructions, such as addition, we tell the computer to
execute arithmetic (or logic) computations in the ALU

* We also need instructions to access the operands from memory
0 Load them from memory to registers
O Store them from registers to memory

* Next, we see how to read (or load) from memory

* Writing (or storing) is performed in a similar way, but we will talk
about that later

An Example Operate Instruction

I
* Load word
High-level code Assembly

e a

o load: mnemonic to indicate the load word operation
o A: base address

o i: offset
= E.g., immediate or literal (a constant)

o a: destination operand
o Semantics: a & Memoryl[A + i]

Load Word in LC-3 and MIPS
R

* LC-3 assembly

R3 ¢ Memory[RO + 2] LC-3 assembly

R3 & Memory[RO + 2]
 MIPS assembly (assuming word-addressable)

High-level code MIPS assembly

U hz 553, 20550

$s3 & Memory[$s0 + 2]

These instructions use a particular addressing mode (i.e., the

way the address is calculated), called base+offset

Load Word in Byte-Addressable MIPS

 MIPS assembly

High-level code MIPS assembly

_azAlZl w $53, 8($50)

$s3 & Memory[Ss0 + 8]

* Byte address is calculated as: word address * bytes/word
— 4 bytes/word in MIPS
— |f LC-3 were byte-addressable (i.e., LC-3b), 2 bytes/word

Instruction Format With Immediate

S
o) LC-3 LC-3 assembly
LDR R3, RO, #2
Field Values
OP DR BaseR offset6
6 3 0 2

15 12 11 9 8 6 5 0

MIPS assembly

* MIPS Iw $s3, 8($50)

Field Values
op rs rt imm

35 | 16 | 19 g [-Type

3 26 25 21 20 16 15 0

Quiz - Group C

1. In a hierarchical computer system design, what does ‘structure’
refer to? (Multichoice).

— a) The way components are connected b) The operation of individual
components c) The type of memory used d) The control flow of data

2. Can you name and explain the four basic functions that every
computer performs? (List).

3. All models in a computer family, like the Intel x86 family, have the
same organization but different architectures (True/False— correct

if false).
B

Quiz - Group B

1. What does the sequencing logic in the Control Unit do?
(Multichoice).

— a) Stores temporary data b) Controls the order of instruction
execution c) Connects the CPU to peripherals d) Manages data
movement

2. Think about the CPU—what are its main parts, and what does
each one do? (List).

3. The Control Unit (CU) in the CPU is responsible for performing
arithmetic and logic operations. (True/False— correct if false).

THANK YOU ©

	Slide 1
	Slide 3: Learning Objectives
	Slide 18: von Neumann Model: Two Key Properties
	Slide 19: Stored Program & Sequential Execution
	Slide 20: A Sample Program Stored in Memory
	Slide 21: The Instruction
	Slide 22: The Instruction: Opcode & Operands
	Slide 23: Instruction Types
	Slide 24: An Example Operate Instruction
	Slide 25: Registers
	Slide 26: From Assembly to Machine Code in LC-3
	Slide 27: Instruction Format (or Encoding)
	Slide 28: From Assembly to Machine Code in MIPS
	Slide 29: Instruction Format: R-Type in MIPS
	Slide 30: Reading Operands from Memory
	Slide 31: An Example Operate Instruction
	Slide 32: Load Word in LC-3 and MIPS
	Slide 33: Load Word in Byte-Addressable MIPS
	Slide 34: Instruction Format With Immediate
	Slide 35: Quiz – Group C
	Slide 36: Quiz – Group B
	Slide 37

