

## Ministry of Higher Education and Scientific Research AL-Mustaqbal University College of Science Department of Biochemistry



# Physical Chemistry Lecture 3 Scholar year 2023-2024

First semester

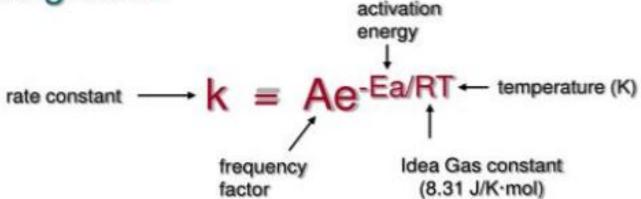
Temperature and Reaction Rate

By
Dr. Assel Amer Hadi

- Purpose
  - To study the effect of temperature on the reaction rate and the reaction rate constant (k) of a chemical reaction and to determine the value of the activation energy (E<sub>a</sub>) for the reaction.
- Safety Considerations
  - Wash your hands thoroughly after handling chemical reagents and before leaving the lab.
  - All chemical wastes should be placed in the labeled jar in the hood.

- Background
  - The chemical reaction being studied in this experiment is:

$$6 \, l^{-} + BrO_{3}^{-} + 6 \, H^{+} \longrightarrow 3 \, l_{2} + Br^{-} + 3 \, H_{2}O$$

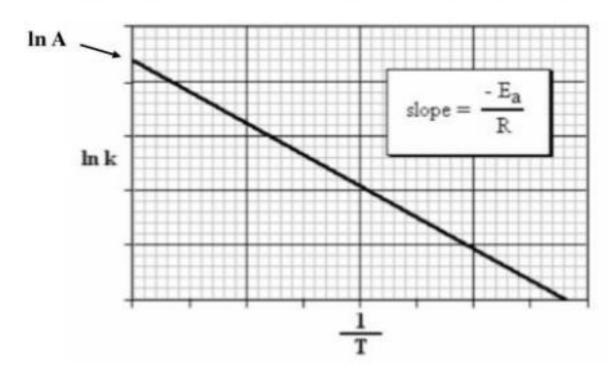

In the previous experiment, you determined the rate law for this reaction to be:

Rate = 
$$k [I^-] [BrO_3^-] [H^+]^2$$

 The value of the rate constant (k) depends on the temperature. The relationship between rate constant and temperature is given by the Arrhenius Equation

$$k = Ae^{-Ea/RT}$$

Background




 Taking the log of both sides of the Arrhenius Equation transforms it into a linear equation:

$$\ln k = \frac{-E_a}{RT} + \ln A$$



- Background
  - The activation energy for a reaction can be found by measuring the value of k at several different temperatures and then plotting ln k vs. 1/T



## The Arrhenius Equation

Arhenius discovered that most reaction-rate data obeyed an equation based on three factors:

- (1) The number of collisions per unit time.
- (2) The fraction of collisions that occur with the correct orientation.
- (3) The fraction of the colliding molecules that have an energy greater than or equal to E<sub>a</sub>.

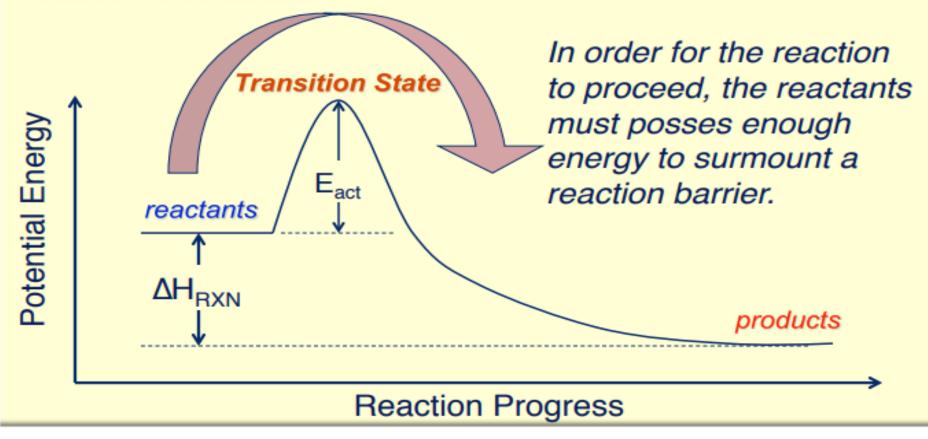
From these observations Arrhenius developed the eponymously-named **Arrhenius equation**.

## The Arrhenius Equation

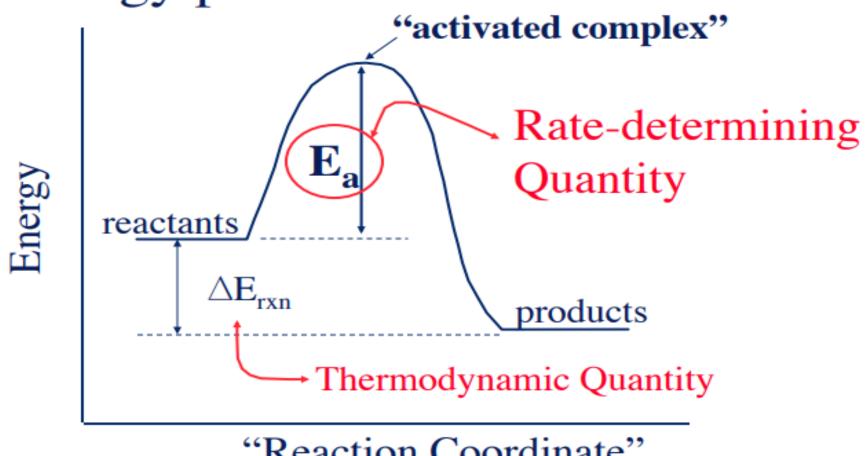
$$k = Ae^{-E_a/RT}$$

k is the rate constant T is the temperature in K

 $E_{\rm a}$  is the activation energy R is the ideal-gas constant (8.314 J/K $\square$ mol)


A is known the frequency or pre-exponential factor

In addition to carrying the units of the rate constant, "A" relates to the frequency of collisions and the orientation of a favorable collision probability


Both A and  $E_a$  are specific to a given reaction.

### **Activation Energy**

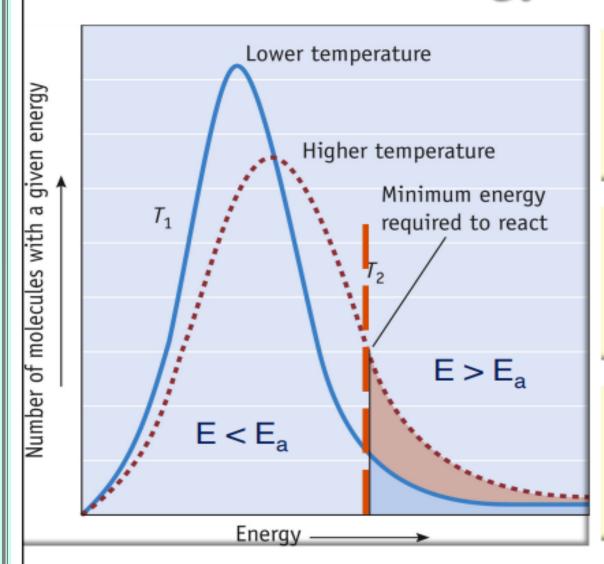
The progress of a chemical reaction as the *reactants* transform to *products* can be described graphically by a *Reaction Coordinate*.



## Energy profile for a reaction



"Reaction Coordinate"


## E<sub>a</sub>, The Activation Energy

Energy of activation for forward reaction:

$$E_a = E_{transition \ state} - E_{reactants}$$

- ◆ A reaction can't proceed unless reactants possess enough energy to give E<sub>a</sub>.
- ◆ ∆E, the thermodynamic quantity, tells us about the <u>net</u> reaction. The activation energy, E<sub>a</sub>, must be available in the surroundings for the reaction to proceed at a measurable rate.

## **Activation Energy**



The temperature for a system of particles is described by a distribution of energies.

At higher temps, more particles have enough energy to go over the barrier.

Since the probability of a molecule reacting increases, the rate increases.

Ln K = Ae - Ea/RT

واجب / اشتقاق معادلة ارينيوس

#### **Determining the Activation Energy**

One can determine the activation energy of a reaction by measuring the rate constant at two temperatures:

Writing the Arrhenius equation for each temperature:

$$\ln k_1 = -\frac{E_a}{RT_1} + \ln A$$
  $\ln k_2 = -\frac{E_a}{RT_2} + \ln A$ 

If one takes the natural log of the ratio of  $k_2$  over  $k_1$  we find that:

$$\ln\left(\frac{\mathbf{k}_2}{\mathbf{k}_1}\right) = \ln \mathbf{k}_2 - \ln \mathbf{k}_1$$

Substituting in the values for  $E_a$  into the equation:

$$\ln \mathbf{k}_2 - \ln \mathbf{k}_1 = \left( -\frac{\mathbf{E}_a}{\mathbf{R} \mathbf{T}_2} + \ln \mathbf{A} \right) - \left( -\frac{\mathbf{E}_a}{\mathbf{R} \mathbf{T}_1} + \ln \mathbf{A} \right)$$

#### Lookie what happens...



Knowing the rate at two temps yields the rate constant.

or

Knowing the  $E_a$  and the rate constant at one temp allows one to find  $k(T_2)$ 

$$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left( \frac{1}{T_1} - \frac{1}{T_2} \right)$$

**Example:** The activation energy of a first order reaction is 50.2 kJ/mol at 25°C. At what temperature will the rate constant double?

(1) 
$$k_2 = 2k_1$$
 (2)  $\ln\left(\frac{k_2}{k_1}\right) = \ln\left(\frac{2k_1}{k_1}\right) = \ln(2) = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$ 

(3) 
$$\frac{E_a}{R} = \frac{50.2 \text{ kJ/mol} \times \frac{10^3 \text{J}}{1 \text{kJ}}}{8.314 \frac{\text{J}}{\text{mol} \cdot \text{K}}} = 6.04 \times 10^3 \text{K}$$

(4) 
$$\ln(2) = 0.693 = 6.04 \times 10^3 \text{ K} \times \left(\frac{1}{298 \text{ K}} - \frac{1}{T_2}\right)$$
A 10°C change of temperature doubles the rate!!

(5) 
$$\frac{1}{T_2} = 3.24 \times 10^{-3} \text{ K}^{-1}$$
  $T_2 = 308 \text{ K}$ 

**Example**/ Using the data for 25C° and 65C° in table, calculate Ea, the energy of activation for the decomposition of Nitrogen pentoxide N<sub>2</sub>O<sub>5</sub>.

$$Log \frac{K2}{K1} = \frac{Ea}{2.303R} * \frac{T2-T1}{T1-T2}$$

Log 
$$\frac{4.87*10-3}{3.46*10-5}$$
 Ea  $\frac{338-298}{2.303R}$   $\frac{338-298}{338-298}$ 

$$Ea = 24.800 cal$$

