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Transient
Second-Order Circuits
1) Introduction

In the previous lecture we considered circuits with a single storage element (a capacitor or
an inductor). Such circuits are first-order because the differential equations describing them are first-
order. In this lecture we will consider circuits containing two storage elements. These are
known as second-order circuits because their responses are described by differential equations that contain
second derivatives.

Typical examples of second-order circuits are RLC circuits, in which the three kinds of
passive elements are present. Examples of such circuits are shown in Fig. 1.1(a) and (b).
Other examples are RL and RC circuits, as shown in Fig. 1.1(c) and (d). It is apparent from
Fig. 1.1 that a second-order circuit may have two storage elements of different type or the same
type(provided elements of the same type cannot be represented by an equivalent single element).

A second-order circuit is characterized by a second-order differential equation. It
consists of resistors and the equivalent of two energy storage elements.
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Fig. 1.1 Typical examples of second-order circuits: (a) series RLC circuit, (b) parallel RLC
circuit, (c) RL circuit, (d) RC circuit.
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2) Finding Initial and Final Values

There are two key points to keep in mind in determining the initial conditions. First—as always in circuit
analysis—we must carefully handle the polarity of voltage v(t) across thecapacitor and the direction of the
current i(t) through the inductor. Keep in mind that v and

i are defined strictly according to the passive sign convention. Second, keep in mind that the capacitor
voltage is always continuous so that

v(0") = v(07) (2.1a)
and the inductor current is always continuous so that
1(0%) =1i(07) (2.1b)

where t = 0~ denotes the time just before a switching event and t = 0+ is the time just after the
switching event, assuming that the switching event takes place at t = 0.

Thus, in finding initial conditions, we first focus on those variables that cannot changeabruptly,
capacitor voltage and inductor current, by applying Eg. (2.1). The following examples illustrate these
ideas.

Example 1: The switch in Fig.1 has been closed for a long time. It is open at t = 0. Find:
(@) i(0t), v(01), (b)di(0)/dt, dv(0t)/dt, (c)i(x), v(o) .

Solution: 40 I 025H
(@) If the switch is closed a long time before ¢ = 0, itmeans — MM 2113
that the circuit has reached dc steady state at ‘
t = 0. At dc steady state, the inductor acts like a shortcircuit, < +
while the capacitor acts like an open circuit, sowe have the 15y (%) 203 1rL,
circuitin Fig.2 (a) at t=0-. Thus, Fig.1 =/ ' B
) 12 z=0‘%
W= ——=24, v(0) =2i(0") =4V
T (0°) = 2i(07)
4Q _’» 40 ! OAZ‘SAH 4Q _7>
™~ < i) s TN
12V (__*‘/x 20 2 o v @ 0.1F —‘— v 12V ,\Tv 5
(@ (b) ©

Fig.2 Equivalent circuit of that in Fig.1 for: (a) t = 0-, (b)t = 0, (c)t — oo.
4
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As the inductor current and the capacitor voltage cannot change abruptly,
i(0Y) =i(07) = 24,v(0") = v(07) = 4V

(b) At t = 07, the switch 1s open; the equivalent circuit is as shown in Fig. 2(b). The same
current flows through both the inductor and capacitor. Hence,

ic(0Y) =i(0%) =24
Since Cdv/dt = i., dv/dt = i./C, and

dv(0*) ic(0%) 2
dt =~ ¢ 0.1

= 20V /s

Similarly, since Ldi/dt = v;, di/dt = v, /L. We now obtain v; by applying KVL to the
loop in Fig 2(b). The result is

—12 4+ 4i(0") + v, (0") +v(0") =0

or

v (0F)=12-8—-4=0

Thus,

di(0*) v, (0Y) 0
dt ~ L 025

= 0A/s

b) For t > 0, the circuit undergoes transience. But as t — oo, the circuit reaches steady stateagain. The
inductor acts like a short circuit and the capacitor like an open circuit, so that thecircuit in Fig. 2(b)
becomes that shown in Fig. 2(c), from which we have

i(0) = 0A,v(0) = 12V

H.W.1: The switch in Fig. 1 was open for a long time but closed at ¢t = 0. Determine: (a)
i(01), v(01), (b)di(0+)/dt, dv(0+)/dt, (¢)i(), v(x™) .

X 1=0
Y
10 Q 04H 1
AAAA e,
VAN L]
20 v= %F () 12v

Answer: (a) 1 A, 2V, (b)25A/s, 0V /s, (c)6A4, 12v.
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Example 2: In the circuit of Fig. 1, calculate: (a) i.(0%), vc(01), vr(01)
(b)diL(0+)/dt, dvc(0*)/dt, dvr(0+)/dt, (c)iL(e0), vc(o0), vr() .

Solution: 40
(a) For t < 0, 3u(t) = 0. At t = 0~ since the circuit Wh—— l"
has reached steady state, the inductor can be replaced . iFT "
by a short circuit, while the capacitor is replaced by  supa (¥) m % ﬁ\.‘ Fosn
an open circuit as shown in Fig. 2(a). From this figure |~ SR
we obtain

Fig. 1
i, (07) = 0,v£(07) = 0, v:(07) = =20V (1.1)

Although the derivatives of these quantities at t = 0~ are not required, it is evident that
they are all zero, since the circuit has reached steady state and nothing changes.

40 g + % — p
o AAAA ) ) f,.dlﬁ‘l"f«.\'v.‘&.v : )
¥ J N l iz 40 | ic 1 g
o ’ =+

e | L4 1p = ).
v 2Q | 3a(d) 20 3 & = " 5 0.6H

) 20 V - @ 20v

Sy
(a) (b)

Fig. 2 The circuit in Fig. 1 for: (a) t = 0-, (b)t = 0+

For t > 0, 3u(t) = 3, so that the circuit is now equivalent to that in Fig. 2(b). Since the
inductor current and capacitor voltage cannot change abruptly,

,(0%) =iy (07) = 0, v(0*) = vc(07) = ~20V (12)
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Although the voltage across the 4 — (2 resistor is not required, we will use it to apply KVL
and KCL; let it be called v,. Applying KCL at node a in Fig. 2(b) gives

_vr(07) 1,(07)
3=+ (13)

Applying KVL to the middle mesh in Fig. 2(b) yields
~vR(0%) + v,(0*) + v (0*) + 20 =0 (14)
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Since v-(0*) = —20V from Eq. (1.2), Eq. (1.4) implies that

vR(0%) = v,(0%) (1.5)
From Egs. (1.3) and (1.5), we obtain

vp(0%) = v,(0%) = 4V (1.6)
(b) Since Ldi, /dt = vy,

di,(0%) v, (0%)
L

But applying KVL to the right mesh in Fig. 2(b) gives
v, (07) =v,(07)+20=0

Hence,
diL(0+) _
at

Similarly, since Cdv./dt = i, then dv./dt = i./C. We apply KCL at node b in Fig.
2(b) to get ic:

(1.7)

200 = 10 (0% +1,(0%) (1.8)
Since v,(0*) =4 and i, (0*) =0, ic(0*) =4/4 =1 A. Then

dv.(07) lc(ﬂ ) _

ar —=5=2V/s (1.9)
To get dvg(0™) /dt, we apply KCL to node a and obtain

vR vo
3 =
A.

Takmg the derivative of each term and setting t = 0" gives

dvR(O"') dve(01)

at (1.10)
We also apply KVL to the middle mesh in Fig. 2(b) and obtain

0=2 +

—vp+v,+204+v,=0

Again, taking the derivative of each term and setting t = 07 yields
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dvg(0%)  dv.(0%)  dv,(0*) _
“Ta TTa a7V
Substituting for dv,(0%)/dt = 2 gives
dvg(0%) dv,(0%)
R g0 2
dt T
From Egs. (1.10) and (1.11), we get

(1.11)

dvg(0%) 2
ac 3/S

We can find digz (0™)/dt although it is not required. Since vy = S5ig,

dig(0*) 1dvg(0*) 12 2
dt 5 dt 53 15

(c) As t — oo, the circuit reaches steady state. We have the equivalent circuit in Fig. 2(a)
except that the 3-A current source is now operative. By current division principle,

2
iL(OO):mBA: 1A (1.12)

4
Vg(00) = mBAxZ =4V, v;(o0) = =20V
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H.W.2: For the circuit in Fig. 1, find: (a) i.(0+), vc(0+), vr(0+) , (b) diL(0+)/dt,

dvc(0+)/dt, dvr(0*)/dt, (c)iL(e0), vc(o0), vr(0) .

i )
R + :». -
J ic 5Q l iL
+ + L |
wna () IFFw “ 3 2H (})6a
Fig. 1

Answer: (a) —64, 0,0, (b)0,20V /s, 0, (c) — 24, 20V, 20V.
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3) The Source-Free Series RLC Circuit

Consider the series RLC circuit shown in Fig. 3.1. The circuit is being excited by the energy
initially stored in the capacitor and inductor. The energy is represented by the initial
capacitor voltage Vo and initial inductor current Io. Thus, att = 0,

1 0
i(0) =1, (3.1b)
Applying KVL around the loop in Fig. 3.1,
: di =1t .
R£+LE+Ef_m£dt=D (3.2)
R z
Iy

Fig. 3.1. A source-free series RLC circuit.

To eliminate the integral, we differentiate with respect to ¢t and rearrange terms. We get

dt? = Ldt LC {3_3)

This is a second-order differential equation and is the reason for calling the RLC circuits in this
lecture second-order circuits. To solve such a second-order differential equation requires that
we have two initial conditions, such as the initial value of i and its first derivative or initial
values of some i and v. The initial value of i is given in Eq. (8.2b). We get the initial value
of the derivative of i from Egs. (3.1a) and (3.2); that is,

11
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S8 = (Rl + V) (3.4)
With the two initial conditions in Egs. (3.1b) and (3.4), we can now solve Eq. (3.4). Our

experience in the preceding lecture on first-order circuits suggests that the solution is of
exponential form. So we let

i = Ae’t (3.5)

where A and s are constants to be determined. Substituting Eq. (3.5) into Eq. (3.3) and
carrying out the necessary differentiations, we obtain

As?est + A—Rse“ + ie“ =0
L LC
or

R 1
Ae*t(s* +Ts+7) = (3.6)
Since i = AeSt is the assumed solution we are trying to find, only the expression in
parentheses can be zero:

2 R 1 _
S +IS+E_O (37}

This quadratic equation is known as the characteristic equation of the formula to differential Eq.
(3.3), since the roots of the equation dictate the character of i. The two roots of Eq. (3.7)are

s=-2+ [@y-2 (3.8a)
- _R_ ’ By _ 1
S2 = 7L (21,) LC (3.8b)

A more compact way of expressing the roots 1s

Ss=—a+tJaZ—wi s,=-a—.a?-w? (3.9)

1
2L Jic (3.10)
13
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The roots s1 and s are called natural frequencies, measured in nepers per second (Np/s) ,
because they are associated with the natural response of the circuit; wo is known as the
resonant frequency or strictly as the undamped natural frequency, expressed in radians
per second (rad/s) ;and a is the neper frequency or the damping factor, expressed in
nepers per second. In terms of a and wo, EQ. (3.7) can be written

s?+2as+wi =0 (3.7a)

14
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Notes:

1) The neper (Np) is a dimensionless unit named after John Napier (1550—
1617), a Scottish mathematician.

2) The ratio a/wo is known as the damping ratio (

The variables s and wo are important quantities we will be discussing throughout the rest
of the lecture.

The two values of s in Eg. (3.9) indicate that there are two possible solutions for i, each of
which is of the form of the assumed solution in Eq. (3.5); that is,

i, = Aesit, i, = A et (3.11)

Since Eq. (3.3) is a linear equation, any linear combination of the two distinct solutions i1
and iz is also a solution of Eq. (3.3). A complete or total solution of Eq. (3.3) would therefore
require a linear combination of i1 and iz. Thus, the natural response ofthe series RLC circuit
IS

i(t) = Aesit + Ayet (3.12)

where the constants A: and A: are determined ffom the initial values i(0) and di(0)/dt
in Egs. (3.1b) and (3.4).

From Eq. (3.9), we can infer that there are three types of solutions
1. If @ > wo, We have the overdamped case.

2. If @ = wo, we have the critically damped case.

3. If @ < wo, we have the underdamped case.

We will consider each of these cases separately.

Note: The response is overdamped when the roots of the circuit’'s characteristic
equation are unequal and real, critically damped when the roots are equal and real,
and underdamped when the roots are complex.

15
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Overdamped Case (a > my)

From Egs. (3.8) and (3.9), a > wo implies C > 4L/R2. When this happens, both roots s:
and sz are negative and real. The response is

i(t) = Aett + A et (3.13)
which decays and approaches zero as t increases. Fig. 3.2(a) illustrates a typical overdamped
response.

Critically Damped Case (a = mo)

When a = w,, C = 4L/R? and

31=52=—.:15=-,::iL (3.14)

For this case, Eq. (3.12) yields

i(t)y=Ae ™ + A,e % = Aze ™™
where Az = A1 + A». This cannot be the solution, because the two initial conditions cannot

—d25+2 di+ 2i =0
dt? FacTEr=
or

d di . di .

— (GG ra) +a(G+ai) =0 (3.15)
If we let

=2+ ai (3.16)
then Eq. (8. 15) becomes

% +af =0
which is a first-order differential equation with solution f = A; e %%, where A, is a constant.

Equation (3.16) then becomes

d_nl‘ +ai = A,e %t
be satisfied with the single constant Az. What then could be wrong? Our assumption of an
exponential solution is incorrect for the special case of critical damping. Let us go back to

Eq. (3.3). When @ = wo = R/2L, Eq. (3.3) becomes

16
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or

di :
e™ —+eai =4 (3.17)
This can be written as
d at;y — A
(e =4 (3.18)
Integrating both sides yields
E‘ati = Alt + Az
or

i = (At +Ay)e" (3.19)

where A is another constant. Hence, the natural response of the critically damped circuit
Is a sum of two terms: a negative exponential and a negative exponential multiplied by a
linear term, or

17
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i(t) = (A +Ayt)e™™ (3.20)
A typical critically damped response is shown in Fig. 3.2 (b). In fact, Fig. 3.2 (b) 1s a sketch

of i(t) = te™™, which reaches a maximum value of e "*/a at t = 1/a, one time constant,
and then decays all the way to zero.

i(f) A

i(f) 4

(a) (b) (©

-
il

|

Fig. 3.2 (a) Overdamped response, (b) critically damped response, (¢) underdamped
response.

18
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Underdamped Case (a < mo)

For @ < wg, C < 4L/R?. The roots may be written as

§1 = —a +J—(w§ —a?)=—a+jug (3.21a)

S =—a—J—(w§—a2) =—a - jwg (3.21b)

where j = v—1and w; = \Jw? — a2, which is called the damping frequency. Both w, and w,

are natural frequencies because they help determine the natural response; while w, 1s often

called the undamped natural frequency, w4 1s called the damped natural frequency. The natural

response 1s

i(t) = Ay~ @0t 4 g e (@0t = palt(f ol@at 4 4, p~]%al) (3.22)
Using Euler’s identities,
e’ = cosf+jsinh, e’ = cos@ —jsinb (3.23)
we get
i(t) = e *[A;( cos wgt + j sin wgt) + A, ( cos wyt — j sin wgt)]

= e "[(A; + Ay) cos wyt + j(A; — A,) sin w,t] (3.24)

Replacing constants (4; + A,) and j(A; — A;) with constants B, and B,, we write

i(t) = e ™ (B; cos wgt + B, sin wgt) (3.25)

With the presence of sine and cosine functions, it is clear that the natural response for this
case is exponentially damped and oscillatory in nature. The response has a time constant of
1/ and a period of T = 2m/wa. Fig. 3.2(c) depicts a typical underdamped response. [Fig.3.2
assumes for each case that i(0) = 0.]

Once the inductor current i(t) is found for the RLC series circuit as shown above, other circuit
quantities such as individual element voltages can easily be found. For example, theresistor voltage
IS vr = Ri, and the inductor voltage is v, = Ldi/dt. The inductor current

i(t) is selected as the key variable to be determined first in order to take advantage of Eq. (2.Ib).

19
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We conclude this section by noting the following interesting, peculiar properties of an RLC
network:

1. The behavior of such a network is captured by the idea of damping, which is the gradualloss of the initial
stored energy, as evidenced by because of the inherent losses in them. thecontinuous decrease in the
amplitude of the response. The damping effect is due to the

2. presence of resistance R. The damping factor « determines the rate at which the response
isdamped. If R = 0, then @ = 0, and we have an LC circuit with 1/+/LC as the undamped
natural frequency. Since a < wo In this case, the response is not only undamped but also
oscillatory. The circuit is said to be loss-less, because the dissipating or damping element (R)
Is absent. By adjusting the value of R, the response may be made undamped, overdamped,
critically damped or undamped.

3.0scillatory response is possible due to the presence of the two types of storage elements.
Having both L and C allows the flow of energy back and forth between the two. The damped
oscillation exhibited by the underdamped response is known as ringing. It stems from the
ability of the storage elements L and C to transfer energy back and forth between them.

4.0bserve from Fig. 3.2 that the waveforms of the responses differ. In general, it is difficult
to tell from the waveforms the difference between the overdamped and critically damped
responses. The critically damped case is the borderline between the underdamped and
overdamped cases and it decays the fastest. With the same initial conditions, the overdamped
case has the longest settling time, because it takes the longest time to dissipate the initial
stored energy. If we desire the response that approaches the final value most rapidly without
oscillation or ringing, the critically damped critically damped circuit. circuit is the right
choice.

20
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Example 3: InFig.3.1,R = 400, L = 4H,and C = 1/4 F. Calculate the characteristic roots
of the circuit. Is the natural response overdamped, under- damped, or critically damped?
Solution: We first calculate

R 40

1 1

(1‘:—:—:5’ e = = :1
2L 2(4) ° T VIC J 1
4)(1

The roots are

S12=—at ’rxz—mgz—Siﬂ#ZS—l

or
s, =—0.101, s, =—9.899

Since @ > wgy. we conclude that the response 1s overdamped. This 1s also evident from the
fact that the roots are real and negative.

Since a > wo, we conclude that the response is overdamped. This is also evident from the
fact that the roots are real and negative.

HW.3:IfR =100, L = 5H,and C = 2mF in Fig.3.1, find a, wo, s1, and s,. What
typeof natural response will the circuit have?

Answer: 1, 10, —1 £ j9.95, underdamped.
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Example 4: Find i(t)in the circuit of Fig.1. Assume that the circuit has reached steady
stateatt = 0-.

Solution:

i(0) = 14, v(0) = 6i(0) = 6V

4+6
where i(0) 1s the initial current through the inductor and v(0) 1s the initial voltage across
the capacitor.

For t < 0, the switch is closed. The capacitor acts like an open circuit while the inductor
acts like a shunted circuit. The equivalent circuit is shown in Fig.2(a). Thus, att = 0,

For t > 0, the switch 1s opened and the voltage source is disconnected. The equivalent
circuit 1s shown in Fig 2(b), which 1s a source- free series RLC circuit. Notice that the 3.2
and 612 resistors, which are in series in Fig_ 1 when the switch 1s opened, have been combined
to give R = 902 in Fig 2(b). The roots are calculated as follows:

R 9 1 1

=9 =10

(4

agz—ai/ﬁ—ﬂﬁz—qiﬂn—u}=—9iﬂsﬂ

Hence, the response 1s underdamped (a < w) ; that 1s,

i(t) = e (A, cos 4.359t + A, sin 4.359¢) (1)
We now obtain 4, and A, using the initial conditions. At t = 0,

i(0)=1=4, (2)
From Eq. (3 .4),

di

drhﬂ=—%mm0y+mpn=—zwuy+u=—&ws 3)
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Note that v(0) =V, = —6V 1s used, because the polarity of v in Fig.2 (b) 1s opposite that
in Fig. 3.1. Taking the derivative of i(t) in Eq. (1),

% = —9e~9% (A, cos 4359t + A, sin 4.359t) + e~ (4.359)(—A4, sin 4.359t + A, cos 4.359¢)
Imposing the condition in Eq. (3) at t = 0 gives

—6=-9(4; +0) +4.359(-0+ A4;)

But A; = 1 from Eq. (2). Then

—6=—-9+4.3594, = A, = 0.6882

Substituting the values of A; and A, in Eq. (1) yields the complete solution as

i(t) = e ®*( cos 4.359t + 0.6882 sin 4.359t)A

o 40 i ]
40 ! SAAA
ANAN *>;{ l . ; - 90
J 002F L: Zea 10v(D) vZea o OOFTC ]
v () T_ T ' -1 3 05H
30 = Z0s5H
1 | @ (b)
Fig.1 Fig.2 The circuit in Fig.1: (a) for 1 <0, (b) for t = 0.

H.W. 4: The circuit in Fig.1 has reached steady state at t = 0-. If the make before-break
switch moves to position b at t = 0, calculate i(t) fort>0

1
10 €2 a ; ®F
AAAA 1
A i(r) .
S0V (;) i ::_: s €
Ejj 1H
I
Fig. 1

Answer: e-25t( 5cos 1.6583t — 7.5378 sin 1.6583¢t)A
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Thank you very much

MSC. ZAHRAA HAZIM
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