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 Transient 

Second-Order Circuits 
1) Introduction 
In the previous lecture we considered circuits with a single storage element (a capacitor or 

an inductor). Such circuits are first-order because the differential equations describing them are first- 

order. In this lecture we will consider circuits containing two storage elements. These are 

known as second-order circuits because their responses are described by differential equations that contain 

second derivatives. 

Typical examples of second-order circuits are RLC circuits, in which the three kinds of 

passive elements are present. Examples of such circuits are shown in Fig. 1.1(a) and (b). 

Other examples are RL and RC circuits, as shown in Fig. 1.1(c) and (d). It is apparent from 

Fig. 1.1 that a second-order circuit may have two storage elements of different type or the same 

type (provided elements of the same type cannot be represented by an equivalent single element). 
 

 

 

Fig. 1.1 Typical examples of second-order circuits: (a) series RLC circuit, (b) parallel RLC 
circuit, (c) RL circuit, (d) RC circuit.

A second-order circuit is characterized by a second-order differential equation. It 
consists of resistors and the equivalent of two energy storage elements. 
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2) Finding Initial and Final Values 
There are two key points to keep in mind in determining the initial conditions. First—as always in circuit 

analysis—we must carefully handle the polarity of voltage 𝑣(𝑡) across the capacitor and the direction of the 

current 𝑖(𝑡) through the inductor. Keep in mind that 𝑣 and 

𝑖 are defined strictly according to the passive sign convention. Second, keep in mind that the capacitor 

voltage is always continuous so that 

     and the inductor current is always continuous so that 

where 𝑡 = 0− denotes the time just before a switching event and 𝑡 = 0+ is the time just after the 

switching event, assuming that the switching event takes place at 𝑡 = 0. 

Thus, in finding initial conditions, we first focus on those variables that cannot change abruptly, 

capacitor voltage and inductor current, by applying Eq. (2.1). The following examples illustrate these 

ideas. 

 

 

Solution: 

(a) If the switch is closed a long time before 𝑡 = 0, it means 

that the circuit has reached dc steady state at 

𝑡 = 0. At dc steady state, the inductor acts like a short circuit, 

while the capacitor acts like an open circuit, so we have the 

circuit in Fig.2 (a) at 𝑡 = 0−. Thus, Fig.1 

𝑖(0−) = 
12

 
4 + 2 

 
= 2𝐴, 𝑣(0−) = 2𝑖(0−) = 4𝑉 

 

 

Fig.2 Equivalent circuit of that in Fig.1 for: (a) 𝑡 = 0−, (𝑏)𝑡 = 0+, (𝑐)𝑡 → ∞.

Example 1: The switch in Fig.1 has been closed for a long time. It is open at 𝑡 = 0. Find: 

(a) 𝑖(0+), 𝑣(0+), (𝑏)𝑑𝑖(0+)/𝑑𝑡, 𝑑𝑣(0+)/𝑑𝑡, (𝑐)𝑖(∞), 𝑣(∞) . 
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As the inductor current and the capacitor voltage cannot change abruptly,

b) For 𝑡 > 0, the circuit undergoes transience. But as 𝑡 → ∞, the circuit reaches steady state again. The 

inductor acts like a short circuit and the capacitor like an open circuit, so that the circuit in Fig. 2(b) 

becomes that shown in Fig. 2(c), from which we have 

𝑖(∞) = 𝑂𝐴, 𝑣(∞) = 12𝑉 
 

H.W.1: The switch in Fig. 1 was open for a long time but closed at 𝑡 = 0. Determine: (a) 

𝑖(0+), 𝑣(0+), (𝑏)𝑑𝑖(0+)/𝑑𝑡, 𝑑𝑣(0+)/𝑑𝑡, (𝑐)𝑖(∞), 𝑣(∞) . 
 

 

 

 
 

 
 

Answer: (a) 1 𝑨, 𝟐𝑽, (𝒃)𝟐𝟓𝑨/𝒔, 𝟎𝑽/𝒔, (𝒄)𝟔𝑨, 𝟏𝟐𝑽. 
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Solution: 

(a) For 𝑡 < 0, 3𝑢(𝑡) = 0. At 𝑡 = 0− since the circuit 

has reached steady state, the inductor can be replaced 

by a short circuit, while the capacitor is replaced by 

an open circuit as shown in Fig. 2(a). From this figure 

we obtain  

Fig. 1 

Although the derivatives of these quantities at 𝑡 = 0− are not required, it is evident that 

they are all zero, since the circuit has reached steady state and nothing changes. 

 

Fig. 2 The circuit in Fig. 1 for: (a) 𝑡 = 0−, (𝑏)𝑡 = 0+ 

 
 

For 𝑡 > 0, 3𝑢(𝑡) = 3, so that the circuit is now equivalent to that in Fig. 2(b). Since the 

inductor current and capacitor voltage cannot change abruptly, 
 

Example 2: In the circuit of Fig. 1 , calculate: (a) 𝑖𝐿(0+), 𝑣𝐶(0+), 𝑣𝑅(0+) , 
(b)𝑑𝑖𝐿(0+)/𝑑𝑡, 𝑑𝑣𝑐(0+)/𝑑𝑡, 𝑑𝑣𝑅(0+)/𝑑𝑡, (𝑐)𝑖𝐿(∞), 𝑣𝑐(∞), 𝑣𝑅(∞) . 
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Although the voltage across the 4 − 𝛺 resistor is not required, we will use it to apply KVL 

and KCL; let it be called 𝑣𝑜. Applying KCL at node 𝑎 in Fig. 2(b) gives 
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 (c) As 𝑡 → ∞, the circuit reaches steady state. We have the equivalent circuit in Fig. 2(a) 

except that the 3‐𝐴 current source is now operative. By current division principle, 
 

 
 
 



Al-Mustaqbal University 

Department of Electrical Engineering Techniques 

Class : Second 

Subject : Electrical Circuits Analysis 

Lecturer: Zahraa Hazim 

1st/2nd term – Lect. Transient Circuits 

 

 

  

10 

 

10 

 

 
 

H.W.2: For the circuit in Fig. 1, find: (a) 𝑖𝐿(0+), 𝑣𝐶(0+), 𝑣𝑅(0+) , (b) 𝑑𝑖𝐿(0+)/𝑑𝑡, 
𝑑𝑣𝐶(0+)/𝑑𝑡, 𝑑𝑣𝑅(0+)/𝑑𝑡, (𝑐)𝑖𝐿(∞), 𝑣𝐶(∞), 𝑣𝑅(∞) . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Answer: (a) −𝟔𝑨, 𝟎, 𝟎, (𝒃)𝟎, 𝟐𝟎𝑽/𝒔, 𝟎, (𝒄) − 𝟐𝑨, 𝟐𝟎𝑽, 𝟐𝟎𝑽. 
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3) The Source‐Free Series RLC Circuit 

Consider the series RLC circuit shown in Fig. 3.1. The circuit is being excited by the energy 

initially stored in the capacitor and inductor. The energy is represented by the initial 

capacitor voltage 𝑉0 and initial inductor current 𝐼0. Thus, at 𝑡 = 0, 

 

 
To eliminate the integral, we differentiate with respect to 𝑡 and rearrange terms. We get 

 

 

This is a second‐order differential equation and is the reason for calling the RLC circuits in this 

lecture second‐order circuits. To solve such a second‐order differential equation requires that 

we have two initial conditions, such as the initial value of 𝑖 and its first derivative or initial 

values of some 𝑖 and 𝑣. The initial value of 𝑖 is given in Eq. (8.2b). We get the initial value 

of the derivative of 𝑖 from Eqs. (3.1a) and (3.2); that is, 
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With the two initial conditions in Eqs. (3.1b) and (3.4), we can now solve Eq. (3.4). Our 

experience in the preceding lecture on first‐order circuits suggests that the solution is of 

exponential form. So we let 

where 𝐴 and 𝑠 are constants to be determined. Substituting Eq. (3.5) into Eq. (3.3) and 

carrying out the necessary differentiations, we obtain 

 

This quadratic equation is known as the characteristic equation of the formula to differential Eq. 

(3.3), since the roots of the equation dictate the character of 𝑖. The two roots of Eq. (3.7) are 
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The roots 𝑠1 and 𝑠2 are called natural frequencies, measured in nepers per second (𝑵𝒑/𝒔) , 

because they are associated with the natural response of the circuit; 𝜔0 is known as the 

resonant frequency or strictly as the undamped natural frequency, expressed in radians 

per second (𝒓𝒂𝒅/𝒔) ;and 𝛼 is the neper frequency or the damping factor, expressed in 

nepers per second. In terms of 𝛼 and 𝜔0, Eq. (3.7) can be written 
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The variables 𝑠 and 𝜔0 are important quantities we will be discussing throughout the rest 

of the lecture. 

The two values of 𝑠 in Eq. (3.9) indicate that there are two possible solutions for 𝑖, each of 

which is of the form of the assumed solution in Eq. (3.5); that is, 
 

Since Eq. (3.3) is a linear equation, any linear combination of the two distinct solutions 𝑖1 

and 𝑖2 is also a solution of Eq. (3.3). A complete or total solution of Eq. (3.3) would therefore 

require a linear combination of 𝑖1 and 𝑖2. Thus, the natural response ofthe series RLC circuit 

is 

 

where the constants 𝐴1 and 𝐴2 are determined ffom the initial values 𝑖(𝑂) and 𝑑𝑖(𝑂)/𝑑𝑡 

in Eqs. (3.1b) and (3.4). 

From Eq. (3.9), we can infer that there are three types of solutions 

1. If 𝛼 > 𝜔0, we have the overdamped case. 

2. If 𝛼 = 𝜔0, we have the critically damped case. 

3. If 𝛼 < 𝜔0, we have the underdamped case. 

We will consider each of these cases separately. 
 

Notes: 

1) The neper (Np) is a dimensionless unit named after John Napier (1550– 
1617), a Scottish mathematician. 

2) The ratio 𝛼/𝜔0 is known as the damping ratio 𝜁. 

Note: The response is overdamped when the roots of the circuit’s characteristic 
equation are unequal and real, critically damped when the roots are equal and real, 
and underdamped when the roots are complex. 
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Overdamped Case (𝑎 > 𝑚𝟎) 

From Eqs. (3.8) and (3.9), 𝛼 > 𝜔0 implies 𝐶 > 4𝐿/𝑅2. When this happens, both roots 𝑠1 

and 𝑠2 are negative and real. The response is 

which decays and approaches zero as 𝑡 increases. Fig. 3.2(a) illustrates a typical overdamped 

response. 

 
Critically Damped Case (𝑎 = 𝑚𝟎) 

where 𝐴3 = 𝐴1 + 𝐴2. This cannot be the solution, because the two initial conditions cannot 

be satisfied with the single constant 𝐴3. What then could be wrong? Our assumption of an 

exponential solution is incorrect for the special case of critical damping. Let us go back to 

Eq. (3.3). When 𝛼 = 𝜔0 = 𝑅/2𝐿, Eq. (3.3) becomes 
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where 𝐴2 is another constant. Hence, the natural response of the critically damped circuit 

is a sum of two terms: a negative exponential and a negative exponential multiplied by a 

linear term, or 
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Underdamped Case (𝑎 < 𝑚𝟎) 
 

 

With the presence of sine and cosine functions, it is clear that the natural response for this 

case is exponentially damped and oscillatory in nature. The response has a time constant of 

1/𝛼 and a period of 𝑇 = 2𝜋/𝜔𝑑. Fig. 3.2(c) depicts a typical underdamped response. [Fig.3.2 

assumes for each case that 𝑖(𝑂) = 0.] 

Once the inductor current 𝑖(𝑡) is found for the RLC series circuit as shown above, other circuit 

quantities such as individual element voltages can easily be found. For example, the resistor voltage 

is 𝑣𝑅 = 𝑅𝑖, and the inductor voltage is 𝑣𝐿 = 𝐿𝑑𝑖/𝑑𝑡. The inductor current 

𝑖(𝑡) is selected as the key variable to be determined first in order to take advantage of Eq. (2.lb). 
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We conclude this section by noting the following interesting, peculiar properties of an RLC 

network: 

 

1. The behavior of such a network is captured by the idea of damping, which is the gradual loss of the initial 

stored energy, as evidenced by because of the inherent losses in them. the continuous decrease in the 

amplitude of the response. The damping effect is due to the 

2. presence of resistance 𝑅. The damping factor 𝛼 determines the rate at which the response 

is damped. If 𝑅 = 0, then 𝛼 = 0, and we have an 𝐿𝐶 circuit with 1/√𝐿𝐶 as the undamped 

natural frequency. Since 𝛼 < 𝜔0 in this case, the response is not only undamped but also 

oscillatory. The circuit is said to be loss‐less, because the dissipating or damping element (R) 

is absent. By adjusting the value of 𝑅, the response may be made undamped, overdamped, 

critically damped or undamped. 

3. Oscillatory response is possible due to the presence of the two types of storage elements. 

Having both 𝐿 and 𝐶 allows the flow of energy back and forth between the two. The damped 

oscillation exhibited by the underdamped response is known as ringing. It stems from the 

ability of the storage elements 𝐿 and 𝐶 to transfer energy back and forth between them. 

4. Observe from Fig. 3.2 that the waveforms of the responses differ. In general, it is difficult 

to tell from the waveforms the difference between the overdamped and critically damped 

responses. The critically damped case is the borderline between the underdamped and 

overdamped cases and it decays the fastest. With the same initial conditions, the overdamped 

case has the longest settling time, because it takes the longest time to dissipate the initial 

stored energy. If we desire the response that approaches the final value most rapidly without 

oscillation or ringing, the critically damped critically damped circuit. circuit is the right 

choice. 
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Example 3: In Fig.3.1, 𝑅 = 40𝛺, 𝐿 = 4𝐻, and 𝐶 = 1/4 F. Calculate the characteristic roots 

of the circuit. Is the natural response overdamped, under‐ damped, or critically damped? 

Solution: We first calculate 

 
 

 
 

Since 𝛼 > 𝜔0, we conclude that the response is overdamped. This is also evident from the 

fact that the roots are real and negative. 

H.W. 3: If 𝑅 = 10𝛺, 𝐿 = 5𝐻, and 𝐶 = 2𝑚𝐹 in Fig.3.1, find 𝛼, 𝜔0, 𝑠1, and 𝑠2. What 

type of natural response will the circuit have? 

 

 

 

 

 

 

Answer: 1, 10, −1 ± 𝑗9.95, underdamped. 
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Example 4: Find 𝑖(𝑡)in the circuit of Fig.1. Assume that the circuit has reached steady 

state at 𝑡 = 0−. 

Solution: 

For 𝑡 < 0, the switch is closed. The capacitor acts like an open circuit while the inductor 

acts like a shunted circuit. The equivalent circuit is shown in Fig.2(a). Thus, at 𝑡 = 0, 
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H.W. 4: The circuit in Fig.1 has reached steady state at 𝑡 = 0−. If the make before‐break 

switch moves to position 𝑏 at 𝑡 = 0, calculate 𝑖(𝑡) for t > 0 

 

 

 

 

 

 

 

 

Answer: 𝒆−𝟐.𝟓𝒕( 𝟓𝐜𝐨𝐬 𝟏. 𝟔𝟓𝟖𝟑𝒕 − 𝟕. 𝟓𝟑𝟕𝟖 𝐬𝐢𝐧 𝟏. 𝟔𝟓𝟖𝟑𝒕)𝑨 
 



Al-Mustaqbal University 

Department of Electrical Engineering Techniques 

Class : Second 

Subject : Electrical Circuits Analysis 

Lecturer: Zahraa Hazim 

1st/2nd term – Lect. Transient Circuits 

 

 

  

24 

 

24 

 
 
 
 

 
 


