

P a g e | 1 Study Year: 2024-2025

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

العلومكلية
ة ـيـبـطــــة الــــمــــظـــن الانــــــــــســق

ةـــيــــــذكـــال
Lab: (4)

Best-First Search (Python Code)

Subject: Artificial Intelligence

Class: Third

Lecturer: Dr. Maytham N. Meqdad

P a g e | 2 Study Year: 2024-2025

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

Best-First Search is a pathfinding algorithm that prioritizes nodes based on a heuristic function,

often estimating the cost to reach the goal from the current node.This example assumes the nodes

are represented in a graph and each node has a heuristic value associated with it, such as an

estimated distance to the goal.

Python Code for Best-First Search

import heapq

class Graph:

 def __init__(self):

 self.edges = {}

 def add_edge(self, node1, node2, cost=1):

 if node1 not in self.edges:

 self.edges[node1] = []

 if node2 not in self.edges:

 self.edges[node2] = []

 self.edges[node1].append((node2, cost))

 self.edges[node2].append((node1, cost))

def best_first_search(graph, start, goal, heuristic):

 open_list = []

 heapq.heappush(open_list, (heuristic[start], start))

 came_from = {start: None}

 visited = set()

 while open_list:

 current_cost, current_node = heapq.heappop(open_list)

 if current_node in visited:

 continue

 visited.add(current_node)

 if current_node == goal:

 path = []

 while current_node is not None:

 path.append(current_node)

 current_node = came_from[current_node]

 return path[::-1] # Return reversed path from start to goal

 for neighbor, cost in graph.edges.get(current_node, []):

 if neighbor not in visited:

 came_from[neighbor] = current_node

 heapq.heappush(open_list, (heuristic[neighbor], neighbor))

 return None # If no path found

Example usage:

Define a graph and heuristics (heuristic values are estimations of distance to the goal)

graph = Graph()

P a g e | 3 Study Year: 2024-2025

Al-Mustaqbal University
College of Sciences

Intelligent Medical System Department

graph.add_edge("A", "B", 1)

graph.add_edge("A", "C", 3)

graph.add_edge("B", "D", 2)

graph.add_edge("C", "D", 1)

graph.add_edge("B", "E", 5)

graph.add_edge("D", "E", 2)

Heuristic values for each node to goal 'E'

heuristic = {

 "A": 5,

 "B": 3,

 "C": 4,

 "D": 2,

 "E": 0

}

Perform Best-First Search from 'A' to 'E'

path = best_first_search(graph, "A", "E", heuristic)

print("Path from A to E:", path)

``` 

### Explanation of Code 

1. **Graph Representation**: The `Graph` class stores nodes and edges using an adjacency list. 

2. **Heuristic Function**: `heuristic` is a dictionary that maps each node to an estimated cost to 

reach the goal. 

3. **Best-First Search Function**: The algorithm uses a priority queue (min-heap) to prioritize 

nodes based on heuristic values, adding nodes with lower estimated costs first. 

4. **Path Reconstruction**: Once the goal is reached, the path is reconstructed by backtracking 

from the goal to the start node using `came_from`. 

5. **Output**: The path from the start node to the goal node is printed. 

### Example Output 

 

This output represents the path found by the Best-First Search algorithm from node `A` to node 

`E` based on the given heuristic values. 

Path from A to E: ['A', 'B', 'D', 'E'] 


