Al-Mustagbal University
College of Sciences
Intelligent Medical System Department

d!ii'l' T all ae AIA.

AL MUSTAQBAL UNIVERSITY

polell auls
At Jl & oo V| pond
s S|

Lab: (4)

Best-First Search (Python Code)

Subject: Artificial Intelligence
Class: Third
rer: Dr. Maytham N. Megdad

Study Year: 2024-2025

Al-Mustagbal University
College of Sciences
Intelligent Medical System Department

Best-First Search is a pathfinding algorithm that prioritizes nodes based on a heuristic function,
often estimating the cost to reach the goal from the current node. This example assumes the nodes
are represented in a graph and each node has a heuristic value associated with it, such as an
estimated distance to the goal.

Python Code for Best-First Search

import heapq
class Graph:
def __init__(self):
self.edges = {}

def add_edge(self, nodel, node2, cost=1):
if nodel not in self.edges:
self.edges[nodel] =[]
if node2 not in self.edges:
self.edges[node2] =[]
self.edges[nodel].append((node2, cost))
self.edges[node2].append((nodel, cost))

def best_first_search(graph, start, goal, heuristic):
open_list =[]
heapq.heappush(open_list, (heuristic[start], start))
came_from = {start: None}
visited = set()

while open_list:
current_cost, current_node = heapg.heappop(open_list)

if current_node in visited:
continue
visited.add(current_node)

if current_node == goal:
path =]
while current_node is not None:
path.append(current_node)
current_node = came_from[current_node]
return path[::-1] # Return reversed path from start to goal

for neighbor, cost in graph.edges.get(current_node, []):
if neighbor not in visited:
came_from[neighbor] = current_node
heapg.heappush(open_list, (heuristic[neighbor], neighbor))

return None # If no path found
Example usage:

Define a graph and heuristics (heuristic values are estimations of distance to the goal)
graph = Graph()

Page |2 Study Year: 2024-2025

Al-Mustagbal University
College of Sciences
Intelligent Medical System Department

graph.add_edge("A", "B",
graph.add_edge("A", "C"
graph.add_edge("B","
graph.add_edge("C", "
graph.add_edge("B",
graph.add_edge("D",

Mmdgqgd

Heuristic values for each node to goal 'E'
heuristic = {
"A": 5,

13,

' n: 4'
", 2

0

}

Perform Best-First Search from 'A’ to 'E’
path = best_first_search(graph, "A", "E", heuristic)
print("Path from A to E:", path)

Explanation of Code
1. **Graph Representation**: The "Graph™ class stores nodes and edges using an adjacency list.

2. **Heuristic Function**: “heuristic’ is a dictionary that maps each node to an estimated cost to
reach the goal.

3. **Best-First Search Function**: The algorithm uses a priority queue (min-heap) to prioritize
nodes based on heuristic values, adding nodes with lower estimated costs first.

4. **Path Reconstruction**: Once the goal is reached, the path is reconstructed by backtracking
from the goal to the start node using “‘came_from".

5. **Qutput**: The path from the start node to the goal node is printed.

Example Output

Path from Ato E: ['A’", 'B", 'D’", 'E']

This output represents the path found by the Best-First Search algorithm from node "A’ to node
"E" based on the given heuristic values.

Study Year: 2024-2025

