[image: ]
Al-Mustaqbal University
College of Sciences
Department of Cybersecurity


كليـــة العلـــــوم
قسم الأمن السيبراني






	
Subject: Object Oriented Programming (OOP)   
Second Stage
Lecturer: Dr. Abdulkadhem A. Abdulkadhem 


Lecture (10)
Arrays as Class Data Members





In C++, arrays can be used as data members in a class. They allow you to store multiple values or objects of the same type within a single class. This is particularly useful when handling multiple elements that belong to the same category or when performing operations on a group of objects.
This lecture covers:
1. Arrays as Class Data Members
2. Object Arrays
3. An Array of Pointers to Objects

1. Arrays as Class Data Members
When an array is used as a data member in a class, it can store multiple values related to that class. Arrays can be of basic data types (like int or float) or user-defined types (like objects of a class). This approach allows encapsulation of multiple values or objects within a single class instance.

Example: Storing Marks of Multiple Subjects
In the following example, a class Student has an array marks as a data member to store the scores of multiple subjects for a single student.
	#include <iostream>
using namespace std;

class Student {
private:
    int marks[5];        // Array to store marks of 5 subjects

public:
    void setMarks(int m[]) {
        for (int i = 0; i < 5; ++i) {
            marks[i] = m[i];
        }
    }

    void displayMarks() const {
        cout << "Marks: ";
        for (int i = 0; i < 5; ++i) {
            cout << marks[i] << " ";
        }
        cout << endl;
    }
};

int main() {
    Student stu1;
    int subjectMarks[5] = {90, 85, 76, 88, 92};

    stu1.setMarks(subjectMarks);
    stu1.displayMarks();

    return 0;
}



Explanation:
· The Student class has an array marks to store scores of 5 subjects.
· The setMarks function accepts an array as input and assigns it to the marks array.
· The displayMarks function outputs the marks stored in the array.

2. Object Arrays
An Object Array is an array where each element is an object of a particular class. This is useful when dealing with multiple instances of a class.
Example: Managing Multiple Employees Using an Object Array
In this example, the Company class has an array of Employee objects as a data member. Each Employee object contains information about individual employees.
	#include <iostream>
#include <string>
using namespace std;

class Employee {
private:
    string name;
    int id;
public:
    void setData(string n, int i) {
        name = n;
        id = i;
    }
    void display() const {
        cout << "Employee ID: " << id << ", Name: " << name << endl;
    }
};

class Company {
private:
    Employee employees[3]; // Array of Employee objects
public:
    void setEmployeeData() {
        string name;
        int id;
        for (int i = 0; i < 3; ++i) {
          cout << "Enter ID and name for employee " << (i + 1) << ": ";
          cin >> id >> name;
          employees[i].setData(name, id);
        }
    }

    void displayEmployees() const {
        cout << "Company Employees:" << endl;
        for (int i = 0; i < 3; ++i) {
            employees[i].display();
        }
    }
};

int main() {
    Company company;

    company.setEmployeeData();
    company.displayEmployees();

    return 0;
}


Explanation:
· Company class contains an array of Employee objects.
· The setEmployeeData method allows input of employee details for each object in the array.
· The displayEmployees method outputs the details of each employee in the array.

3. An Array of Pointers to Objects
An Array of Pointers to Objects is an array where each element is a pointer to an object. This allows dynamic allocation and more flexibility, as you can decide when to create or delete objects.
Example: Managing Library Books Using an Array of Pointers to Objects
In this example, the Library class has an array of pointers to Book objects. This allows creating books only as needed.
	#include <iostream>
#include <string>
using namespace std;

class Book {
private:
    string title;
    string author;

public:
    Book(string t, string a) : title(t), author(a) {}

    void display() const {
        cout << "Title: " << title << ", Author: " << author << endl;
    }
};

class Library {
private:
    Book* books[5]; // Array of pointers to Book objects
    int count;

public:
    Library() : count(0) {}

    void addBook(string title, string author) {
        if (count < 5) {
            books[count] = new Book(title, author); // Dynamically allocate a new Book
            ++count;
        } else {
            cout << "Library is full." << endl;
        }
    }

    void displayBooks() const {
        cout << "Library Books:" << endl;
        for (int i = 0; i < count; ++i) {
            books[i]->display();
        }
    }

    ~Library() {
        for (int i = 0; i < count; ++i) {
            delete books[i]; // Free allocated memory
        }
    }
};

int main() {
    Library library;

    library.addBook("1984", "George Orwell");
    library.addBook("To Kill a Mockingbird", "Harper Lee");

    library.displayBooks();

    return 0;
}



[bookmark: _GoBack]Explanation:
· Library has an array of pointers to Book objects.
· The addBook method dynamically allocates a new Book object and stores its pointer in the array.
· The displayBooks method displays details of each book.
· In the destructor of Library, we use delete to free the allocated memory, preventing memory leaks.

Summary
· Arrays as Class Data Members: Arrays can store multiple values of basic or user-defined types in a single class.
· Object Arrays: An array of objects within a class allows handling multiple instances of that class type.
· Array of Pointers to Objects: This approach allows dynamic memory allocation, giving flexibility in creating and deleting objects as needed.

2024-2025
image1.png




